-
公开(公告)号:CN117149949B
公开(公告)日:2024-12-17
申请号:CN202311059658.5
申请日:2023-08-22
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/33 , G06F16/335 , G06F16/35 , G06F18/23
Abstract: 本发明公开了一种融合多源信息的人名消歧方法及装置,所述方法包括:将所有文本划分为若干个类;基于同名作者对应的机构名称、文本共同作者和文本主题内容,分别对每一类文本进行聚类,以得到该类文本的机构名第一聚类结果、共同作者第一聚类结果和主题内容第一聚类结果;基于簇内机构信息及文本的共现信息,对机构名第一聚类结果、共同作者第一聚类结果和主题内容第一聚类结果进行融合,得到该类文本的初步聚类结果;提取初步聚类结果中的单簇文本,并基于所述单簇文本与该类文本中其他文本的相似度进行单簇文本的融合后,得到人名消歧结果。本发明可以实现了更好的消歧准确率。
-
公开(公告)号:CN117271765A
公开(公告)日:2023-12-22
申请号:CN202311059507.X
申请日:2023-08-22
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/35 , G06F40/30 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种基于多语义特征融合的文本分类方法及装置,所述方法包括:获取待分类的文本,将所述待分类的文本进行预处理,得到处理后的文本;将词级粒度向量输入训练完毕的词级语义特征提取模型,得到词级语义特征;将句子级粒度向量输入训练完毕的句子级语义特征提取模型,得到句子级语义特征;基于文章级向量对所述处理后的文本进行特征提取,得到文本级语义特征;将所述词级语义特征、句子级语义特征以及文本级语义特征进行特征拼接融合,得到融合后特征,使用分类器对所述融合后特征进行分类。本方法从词粒度、句子粒度和文章粒度等多个层面对文本进行精细语义建模,利用文本的多语义融合特征进行文本分类,提高了文本分类的准确率。
-
公开(公告)号:CN117194773A
公开(公告)日:2023-12-08
申请号:CN202311061729.5
申请日:2023-08-22
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/9535 , G06F16/9538 , G06F16/35 , G06F16/532
Abstract: 本发明公开了一种基于多模态特征的网站识别方法及装置,所述方法包括:获取处理后的网页信息;得到对应的网页文本特征;获取网页用户特征;获取网页资源信息特征;获取所述网页信息对应的网页图片快照,由网页图片处理模块对所述网页图片快照提取网页图片特征;将所述网页文本特征、网页用户特征、网页资源信息特征及网页图片特征进行特征融合,得到多模态融合特征,由多模态识别模型对所述多模态融合特征进行识别。本方法利用多模态识别模型对网站进行分类,有效提高了对不良网站识别的准确率。
-
公开(公告)号:CN117149949A
公开(公告)日:2023-12-01
申请号:CN202311059658.5
申请日:2023-08-22
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/33 , G06F16/335 , G06F16/35 , G06F18/23
Abstract: 本发明公开了一种融合多源信息的人名消歧方法及装置,所述方法包括:将所有文本划分为若干个类;基于同名作者对应的机构名称、文本共同作者和文本主题内容,分别对每一类文本进行聚类,以得到该类文本的机构名第一聚类结果、共同作者第一聚类结果和主题内容第一聚类结果;基于簇内机构信息及文本的共现信息,对机构名第一聚类结果、共同作者第一聚类结果和主题内容第一聚类结果进行融合,得到该类文本的初步聚类结果;提取初步聚类结果中的单簇文本,并基于所述单簇文本与该类文本中其他文本的相似度进行单簇文本的融合后,得到人名消歧结果。本发明可以实现了更好的消歧准确率。
-
公开(公告)号:CN115269833A
公开(公告)日:2022-11-01
申请号:CN202210760202.0
申请日:2022-06-29
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院信息工程研究所
IPC: G06F16/35 , G06F40/194 , G06K9/62
Abstract: 本发明公开一种基于深度语义和多任务学习的事件信息抽取方法及系统,属于文本信息抽取领域。为克服现有事件信息抽取技术准确率、召回率低等不足,本发明主要利用预训练语言模型通过对文章在篇章级、语段级、语句级、词语级等粒度上分别进行向量表示,通过依次进行事件分类、事件论元抽取、关键词抽取获得事件的主要信息。本发明在事件分类、事件论元抽取、关键词抽取三方面达到了非常高的准确率。
-
公开(公告)号:CN112181613A
公开(公告)日:2021-01-05
申请号:CN202010943286.2
申请日:2020-09-09
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明公开了一种异构资源分布式计算平台批量任务调度方法及存储介质,本发明在由几个计算中心组成的异构资源分布式计算集群中,将每个计算中心中的异构资源进行整合与分组,针对分布式计算平台中常见任务的需求,将这些资源合理地分配到预设的具有相应资源偏好的任务队列中。当有一批新任务提交时,根据用户提交的每个任务的相应特征以及各个中心的任务队列当前状态,分析全局最优解,为每个任务选择合适的队列。从而高效利用跨中心多集群中的异构资源,合理进行批量任务调度,解决现有技术中任务调度性能低、任务等待时间长的问题。
-
公开(公告)号:CN108200576B
公开(公告)日:2020-11-06
申请号:CN201711259304.X
申请日:2017-12-04
Applicant: 中国科学院信息工程研究所 , 国家计算机网络与信息安全管理中心
Abstract: 本发明提供一种卫星互联网中不良用户的检测方法及系统,该方法的步骤包括:检测卫星接收终端与用户终端之间的WiFi工作频段是否有WiFi信号;如果有WiFi信号,则检测卫星互联网上行频段是否有上行信号;如果有上行信号,则检测发出该上行信号的用户的身份信息;根据该用户的身份信息接入该用户接入的卫星接收终端,获取该用户的通信内容;根据该用户的身份信息和通信内容,判断该用户是否为不良用户。本发明用于识别出卫星互联网中的不良用户,为卫星互联网的安全管控提供重要基础,提高网络的安全性,具有简单易行的技术优势。
-
公开(公告)号:CN106095928B
公开(公告)日:2019-10-29
申请号:CN201610409465.1
申请日:2016-06-12
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明公开了一种事件类型识别方法及装置。该方法包括以下步骤:对训练集中所有文本进行分词、提取词性处理后训练词向量空间模型,提取文本的特征,将文本表示为特征向量;对于训练集进行事件类型聚类,训练带有类型聚类正则化项的神经网络模型;对于测试样本同样进行分析、提取词性处理,并利用已经训练好的词向量模型,得到特征表示;利用类型聚类正则化项的神经网络模型进行事件类别识别。借助于本发明的技术方案,能够利用同一群组中的类型共享信息来减轻标注数据不平衡带来的问题。
-
公开(公告)号:CN108810020A
公开(公告)日:2018-11-13
申请号:CN201810776782.6
申请日:2018-07-13
Applicant: 中国科学院信息工程研究所 , 国家计算机网络与信息安全管理中心
CPC classification number: H04L63/306 , H04B7/18597 , H04L12/12 , H04L63/0236 , H04L63/0245 , H04W12/00 , H04W52/38
Abstract: 本发明提供一种空间互联网管控方法,其步骤包括:实时监测卫星空间站与卫星接收终端之间的星地信号以及卫星接收终端与用户终端之间的WiFi信号,找出卫星互联网用户;对检测到的卫星互联网用户的WiFi信号进行解调、协议解析及内容还原,根据管控策略判断是否含有非法内容;如果含有非法内容,通过噪声干扰来阻断区域范围内的星地信号,通过协议阻断来阻断WiFi信号。
-
公开(公告)号:CN118821774A
公开(公告)日:2024-10-22
申请号:CN202410768549.9
申请日:2024-06-14
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F40/295 , G06N3/0442 , G06N3/0455 , G06N3/08
Abstract: 本发明公开一种基于序列转化的命名实体识别方法及系统,属于信息抽取领域。所述方法包括:利用双向长短记忆神经网络解码自然文本,得到第t个时间步的隐藏向量ht;利用单向长短记忆网络对所述隐藏向量ht进行解码,得到第j个时间步的解码结果sj;基于第j‑1个时间步的解码结果sj‑1生成第j个时间步的标签概率分布矩阵Pj;获取条件随机场生成的标签转移概率矩阵Aj;基于所有时间步j上的标签概率分布矩阵Pj和标签转移概率矩阵Aj,得到自然文本对应的命名实体识别结果。本发明可以利用过去和未来的标签来高精度地预测当前标签。
-
-
-
-
-
-
-
-
-