-
公开(公告)号:CN111859979A
公开(公告)日:2020-10-30
申请号:CN202010549940.1
申请日:2020-06-16
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F40/30 , G06F40/289 , G06F16/953 , G06N3/04
Abstract: 本申请涉及一种讽刺文本协同识别方法、装置、设备及计算机可读介质。该方法包括:获取待处理文本,待处理文本来自于社交媒体网络平台;提取待处理文本的语义特征信息和主题特征信息,语义特征信息用于表征待处理文本与讽刺类型的关联关系,主题特征信息用于表征待处理文本体现的讽刺主题;根据第一神经网络模型对语义特征信息和主题特征信息的识别结果确定待处理文本的文本类型,并确定待处理文本的主题标签。本申请利用表征语义情感的特征和表征讽刺主题的特征对待处理文本进行协同识别,既确定是否带有讽刺含义,在具备讽刺含义的情况下还同时识别出体现讽刺的主题,实现有主题区分度的文本语义表示,有效提高了讽刺识别的准确率和解释性。
-
公开(公告)号:CN110083699A
公开(公告)日:2019-08-02
申请号:CN201910202638.6
申请日:2019-03-18
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F16/35
Abstract: 本发明提出了一种基于深度神经网络的新闻流行度预测模型训练方法,包括:获取特定主题设定时间段的新闻文章数据,用Pandas进行数据清洗后按照设定时间长度进行顺次分组,获取按时间顺序排列得到新闻流行度序列;依据所述新闻流行度序列,从第一个流行度开始依次按照采样长度为w的连续序列作为输入样本,并采样其之后一期的数据作为输出样本,构建训练样本集;随机从训练样本集中选择训练样本对基于LSTM网络的新闻流行度预测模型进行训练,并采用Pearson相关系数进行关联性分析删除不良的训练样本,循环训练过程至训练结束。本发明可以获得用来对无趋势性、无季节性及非线性新闻流行度进行较高准确率预测的新闻流行度预测模型。
-
公开(公告)号:CN105279485A
公开(公告)日:2016-01-27
申请号:CN201510655615.2
申请日:2015-10-12
Applicant: 江苏精湛光电仪器股份有限公司 , 中国科学院自动化研究所
IPC: G06K9/00
Abstract: 本发明公开了视频监控领域内的激光夜视下监控目标异常行为的检测方法,包括以下步骤:1)建立模型:在cifar10数据库上预训练CNN模型,CNN模型包括3个卷积层、1个全连接层和1个输出层;2)视频表达:将视频图像表达为维度特征;3)事件重建:将正常事件以及异常事件进行区分,本发明提高了检测的精度,提高异常事件识别率,可用于视频监控中。
-
公开(公告)号:CN115358233A
公开(公告)日:2022-11-18
申请号:CN202210798992.1
申请日:2022-07-06
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F40/295 , G06N20/00
Abstract: 本发明提供一种语言命名实体识别方法、语言识别装置、电子设备及介质,该方法包括:获取目标语言对应的待标注数据集;根据所述待标注数据集,基于语言预测模型,得到目标预测数据;根据预设的已标注数据集及所述目标预测数据,得到目标数据集;根据所述目标数据集,基于语言识别模型,得到所述目标语言对应的实体识别结果。该方法用以解决现有技术中由于一些目标语言及这些目标语言对应的样本数据集具有一定的局限性,易导致电子设备无法对上述这些目标语言进行准确识别的缺陷,实现电子设备可对这些目标语言进行准确识别,得到准确性较高的实体识别结果。
-
公开(公告)号:CN111859980A
公开(公告)日:2020-10-30
申请号:CN202010549951.X
申请日:2020-06-16
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F40/30 , G06F40/289 , G06F16/9536 , G06N3/04 , G06N3/08
Abstract: 本申请涉及一种讽刺类型的文本识别方法、装置、设备及计算机可读介质。该方法包括:获取待处理文本,待处理文本来自于社交媒体网络平台;采用多种方式提取待处理文本的目标特征信息,目标特征信息为从特征集合中选择出来的多个特征信息的加权和表示;根据第一神经网络模型对目标特征信息的识别结果确定待处理文本的文本类型,第一神经网络模型是采用具有标记信息的训练数据对第二神经网络模型进行训练后得到的,标记信息用于标记训练数据是否为目标类型。本申请从多个维度捕获词间关联特征,并从讽刺文本的情感倾向转换出发,挖掘词语间的冲突性,进而充分体现句子中地所蕴含的讽刺含义,最终准确、合理地识别讽刺文本。
-
公开(公告)号:CN109800431B
公开(公告)日:2020-07-28
申请号:CN201910062802.8
申请日:2019-01-23
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F40/289 , G06F16/35
Abstract: 本发明属于计算机科学技术领域,尤其是涉及一种事件信息关键词提取、监控方法及系统及存储和处理装置,旨在为了解决解决无监督方法提取关键词效果不稳定的问题。本发明提取方法对于获取的待监控的事件信息,基于多种关键词提取技术提取并优选一组相关性很强的关键词作为第一关键词组,而后基于关键词在时域的发展演化选出最新的热点词汇作为第二关键词组,再后对同一时间段内的同一事件的不同报道进行聚类,提取各聚类的关键词合并后作为第三关键字组,最后合并三个关键词组并选定最终的关键词组合。本发明提高了系统的稳定性,同时兼顾了时域及同一事件不同侧面的发展方向。
-
公开(公告)号:CN109977227A
公开(公告)日:2019-07-05
申请号:CN201910205999.6
申请日:2019-03-19
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
Abstract: 本发明属于信息分类领域,具体涉及了一种基于特征编码的文本特征提取方法、系统、装置,旨在解决文本特征提取中运算复杂度高、分类效率和精度低的问题。本发明方法包括:对获取的文本预处理,获得词候选特征序列;基于词候选特征序列,生成多个二进制编码;采用基因遗传算法筛选二进制编码,获得最优二进制编码;解码最优二进制编码获得最优词特征序列并输出。本发明将一系列候选特征转化为易处理的编码序列,并使用基因遗传算法的自动筛选功能,对特征进行最大化的全局最优挑选,能够有效地筛选出最小有效特征集。
-
公开(公告)号:CN108470046A
公开(公告)日:2018-08-31
申请号:CN201810184478.2
申请日:2018-03-07
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F17/30
CPC classification number: G06F16/34 , G06F16/9535
Abstract: 本发明涉及计算机技术领域,具体提供了一种基于新闻事件搜索语句的新闻事件排序方法及系统,旨在解决在考虑用户主观信息的情况下,如何实现新闻事件排序的技术问题。为此目的,本发明中的新闻事件排序方法,能够通过预设的新闻事件排序模型对预先获取的新闻事件搜索语句进行识别,得到按照相关度大小排序的新闻事件排序结果。其中,新闻事件搜索语句包含能够表征用户情感倾向的用户主观信息。基于此,本发明能够结合用户对新闻事件的情感倾向,按照新闻事件与用户偏好相关程度进行排序,从而提高新闻事件排序结果的准确性。同时,本发明中的系统能够执行并实现上述方法。
-
-
-
-
-
-
-