-
公开(公告)号:CN101841048B
公开(公告)日:2012-09-26
申请号:CN201010114398.3
申请日:2010-02-26
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明涉及一种硼氢化锂-多孔碳水解发生氢气的方法与反应系统,属于燃料电池氢源的制氢储氢技术。其特征是:通过机械球磨LiBH4和多孔碳材料制备水解材料,控制与水解材料反应的液态水的进水速率和水蒸气的饱和蒸汽压从而对反应的放氢量、放氢速度等进行有效控制。本发明是将水解制氢与制氢系统精密结合,这种水解制氢系统无需催化剂加速;可持续稳定放氢;控制方便;且放氢效率较NaBH4水解制氢体系高。完全满足氢燃料电池对氢源的要求。应用本发明的技术对促进新能源相关行业的进步、实现节能减排目标和促进低碳经济发展意义重大而深远。
-
公开(公告)号:CN101015798B
公开(公告)日:2012-05-30
申请号:CN200710037621.7
申请日:2007-02-16
Applicant: 中国科学院上海微系统与信息技术研究所
Inventor: 杨辉
Abstract: 本发明提供了负载型和非负载型铂-钌基电催化剂和基于金属簇合物途径的制备方法。催化剂为铂和钌的混合物,或在铂和钌的混合物中添加过渡金属IB到IIIB的一种或几种辅助成分,形成多组分的催化剂。制备过程的特征为:①在碱性条件下通过一氧化碳与催化剂的前驱体在20~100℃度反应得到金属簇合物溶液,②在惰性气体、CO或它们的混合气体保护下向前躯体中加入不同的碳载体,搅拌后,再在30~120℃在惰性气体或CO或它们的混合气体保护下移走溶剂,③经热处理10分钟到8小时以上;④经过水洗、干燥,得到最终催化剂。该催化剂中粒子大小从1.5nm到20nm范围可控、组成可控,且粒子分布窄,适合用作质子交换膜燃料电池阳极催化剂。
-
公开(公告)号:CN101436676A
公开(公告)日:2009-05-20
申请号:CN200810203591.7
申请日:2008-11-28
Applicant: 中国科学院上海微系统与信息技术研究所
CPC classification number: Y02E60/522 , Y02P70/56
Abstract: 本发明涉及一种平板式微型直接醇类燃料电池组及其制作方法,包括平板微型电池,所述的平板式微型燃料电池组采用一体化阴极流场板或阳极流场板,所述的一体化阴极流场板或阳极流场板是指采用MEMS技术在硅片材料上按照一定排列方式集成制备至少两个单体电池流场,并且每个单电池流场表面具有独立的导电层图形,该导电层互相隔离,并具有确定的图形和焊接位点便于电池组的串联连接。本发明提供了一种制备工艺简单、结构封装体积小、电池组串联效率高的平板式微型燃料电池组及其制作方法。
-
公开(公告)号:CN101269327A
公开(公告)日:2008-09-24
申请号:CN200810033522.6
申请日:2008-02-04
Applicant: 中国科学院上海微系统与信息技术研究所 , 南京师范大学
Abstract: 本发明涉及了一种高稳定性碳载Pt-Au双金属纳米电催化剂的制备方法,其特征在于:(1)在-10~10℃中,将一定浓度氯金酸溶液加入到纳米Pt/C催化剂中经超声或搅拌混合,控制Pt∶Au的原子比为18∶1-5∶1;(2)添加少量C1-C3的一元、二元或三元醇类,在-10~10℃下搅拌10min-5h,制备了碳载铂金双金属纳米电催化剂;(3)视需要,可将步骤(2)得到的催化剂在惰性气氛或还原气氛中经100~700℃高温处理0.5-4h,可调控Pt-Au/C双金属纳米催化剂的粒径。金的添加不仅提高了催化剂的热稳定性和对氧气还原的电催化活性,还显著增强了的电化学稳定性。提供的方法极其简便、适合于批量生产,得到的催化剂适合用作质子交换膜燃料电池阴极催化剂。
-
公开(公告)号:CN101267041A
公开(公告)日:2008-09-17
申请号:CN200810036830.4
申请日:2008-04-29
Applicant: 中国科学院上海微系统与信息技术研究所
CPC classification number: Y02E60/522 , Y02P70/56
Abstract: 本发明公开了一种制备直接醇燃料电池膜电极的方法,其特征在于,包括以下步骤:A、将催化剂和第一粘结剂分散于分散剂中,得到浆料;B、将浆料在40~100℃加热10分钟~3小时,再超声10分钟~2小时,形成均匀的浆液;C、将浆液涂覆在支撑层上制成膜电极。本发明中的制备直接醇燃料电池膜电极的方法,方法简单,易于操作,通过调控第一粘接剂的聚集状态,显著提高了燃料电池的功率密度和稳定性。本发明制备的膜电极有效地提高了电极的催化活性和效率,提高燃料电池膜电极的催化效率和催化剂的利用率,有效地提高了电池的性能及其稳定性,降低了电池的极化损失,从而提高了燃料电池的性能。
-
公开(公告)号:CN102794171A
公开(公告)日:2012-11-28
申请号:CN201210218965.9
申请日:2012-06-28
Applicant: 上海中科高等研究院
Abstract: 本发明提供了一种牺牲氧化镁载体制备铂黑/铂钌黑纳米电催化剂的方法。本发明方法为基于金属羰基簇合物途径制备铂黑/铂钌黑纳米电催化剂的方法,包括催化剂前驱体—金属羰基簇合物的合成、氧化镁的注入、催化剂中间体的热处理、氧化镁的溶解以及催化剂后处理步骤。具体为:在碱性条件下通CO与电催化剂的前驱体反应得金属羰基簇合物,再在保护气氛下加入氧化镁,经搅拌后在30~120oC保护气氛下移走溶剂;然后热处理;之后加入酸溶液溶解氧化镁,并加热后处理得到粒径在2nm到20nm、且粒子大小分布窄的铂黑/铂钌黑纳米电催化剂,适合用作质子交换膜燃料电池的阴极和阳电催化剂。
-
公开(公告)号:CN102683725A
公开(公告)日:2012-09-19
申请号:CN201210187091.5
申请日:2012-06-07
Applicant: 上海中科高等研究院
CPC classification number: Y02E60/523
Abstract: 本发明提供了一种高性能直接甲醇燃料电池膜电极集合体的制备方法。将贵金属催化剂加入到异丙醇和水的混合溶液中,然后加入Nafion溶液,控制溶液中异丙醇和水的比例和溶液的温度,超声处理后,冷冻混合浆液成固体,然后进行冷冻干燥处理,即可得到干燥的催化剂与Nafion树脂的混合物。采用模板法,将上述干的催化剂混合物直接干压在气体扩散电极或者质子传输膜上,然后热压制备成膜电极集合体。根据直接甲醇方式燃料电池,对膜电极的测试结果表明,该膜电极的性能略高于CCM方法以及GDL传统方法制备的膜电极集合体。此方法方便、高效、易于操作,且成本低廉,可满足直接甲醇燃料电池等领域的开发和利用,具有一定的实际应用价值。
-
公开(公告)号:CN102544539A
公开(公告)日:2012-07-04
申请号:CN201210014280.2
申请日:2012-01-17
Applicant: 上海中科高等研究院
CPC classification number: Y02P70/56
Abstract: 本发明公开了一种燃料电池封装方法,将燃料电池的各组成部分依次固定于燃料电池封装模具中,然后将塑料注入到燃料电池封装模具中,待塑料冷却后脱模,得到燃料电池。本发明的燃料电池封装方法,由于采用了注塑成型技术,使封装后的燃料电池体积减小,能明显提高电池能量密度;并且解决了用胶封装的不良后果,该不良后果为固化后的胶体容易溶解在甲醇溶液中,溶解在溶液中的胶体部分随着甲醇溶液扩散到膜电极表面,造成电池性能的严重衰减。本发明还公开了一种燃料电池封装模具,该燃料电池封装模具结构紧凑,使用方便,并能灵活控制膜电极的压缩比,可以用于单电池封装、堆叠式电堆封装、平板式电堆封装。
-
公开(公告)号:CN103199268A
公开(公告)日:2013-07-10
申请号:CN201310077628.7
申请日:2013-03-11
Applicant: 上海中科高等研究院
CPC classification number: Y02P70/56
Abstract: 本发明涉及燃料电池领域,具体涉及一种基于纳米压印技术制备有序纳米结构膜、有序纳米结构膜电极的方法,以及前述制备技术在离子交换膜燃料电池制备中的应用。本发明在外加温度、压力的作用下,采用表面具有有序纳米结构图案的硬模板对高分子膜进行压印,在高分子膜上形成与硬模板上的图案互补的有序纳米结构,脱模,获得所述有序纳米结构膜;在所述有序纳米结构膜上涂覆催化剂层,获得有序纳米结构膜电极。采用本发明方法对有序纳米结构膜电极进行制备,不仅可降低催化剂的载量、提高催化剂的利用率,达到膜电极和电池成本降低的目的,还能实现燃料电池性能的提高,极具开发价值和市场潜力。
-
公开(公告)号:CN103146018A
公开(公告)日:2013-06-12
申请号:CN201310050115.7
申请日:2013-02-08
Applicant: 上海中科高等研究院
Abstract: 本发明涉及膜材料领域,尤其涉及一种大倍率放电多孔隔膜材料的制备方法及其应用。本发明提供一种大倍率放电多孔隔膜材料的制备方法,包括如下步骤:利用聚偏氟乙烯或者聚(偏氟乙烯-co-六氟丙烯),采用浸没沉淀法或热致相分离法制备多孔薄膜;将所制备的PVDF或PVDF-HFP多孔膜进一步通过等离子技术对膜表面进行后处理,形成由纳米到微米孔可控的指状孔道贯穿到底层的高开孔率的多孔隔膜。本发明所制备的多孔膜的形貌由均匀纳米或微米孔皮层,大指状孔道及海绵孔底层组成,这种结构的多孔膜提供了足够的空间容纳电解液,使得电解液充满孔道,也使得电解液与聚偏氟乙烯最大面积的形成凝胶电解质,增大多孔隔膜对电解液的容纳能力。
-
-
-
-
-
-
-
-
-