一种基于电场加速的离子风推力装置

    公开(公告)号:CN111706480A

    公开(公告)日:2020-09-25

    申请号:CN202010558334.6

    申请日:2020-06-18

    Abstract: 本发明涉及一种基于电场加速的离子风推力装置,涉及临近空间电推进领域。该离子风推力装置包括离子风推力器和电场加速子装置;电场加速子装置设置于离子风推力器的放电空间中;离子风推力器产生的第一电场将中性气体分子电离成第一带电粒子,第一带电粒子在第一电场的作用下加速运动,并在运动过程中与中性气体分子碰撞产生第二带电粒子,第一带电粒子和第二带电粒子定向加速运动形成离子风;电场加速子装置产生的加速电场用于调控带电粒子的加速过程。第一带电粒子和第二带电粒子在运动过程中进入加速电场,并受到加速电场的作用,速度进一步发生变化,通过调控加速电场实现对带电粒子的加速与减速控制,改善离子风推力器加速过程。

    一种微阴极电弧推力阵列系统

    公开(公告)号:CN111516907A

    公开(公告)日:2020-08-11

    申请号:CN202010342613.9

    申请日:2020-04-27

    Abstract: 本发明公开了一种微阴极电弧推力阵列系统,涉及卫星微推进技术领域,包括一个由多组微阴极电弧推力器按照偶数正多边形放置方式排布集成的推力器集成部、一个功率输出单元和一个控制部;功率输出单元的输出端通过控制部与推力器集成部的阳极连接,推力器集成部的阴极与功率输出单元的输入端连接;其中,多组微阴极电弧推力器的阴极共用;通过控制部控制推力器集成部不同阳极与阴极间的通断,以达到多组微阴极电弧推力器轮流放电的目的;通过改变控制部的放电模式,以使微阴极电弧推力器在多种工作模式中选择,达到满足不同推进需求的目的。本发明具有质量和体积均减小、推重比和可靠性均上升、更好满足卫星推进需求等功能。

    一种基于微波增强的场致发射推力器

    公开(公告)号:CN111456921A

    公开(公告)日:2020-07-28

    申请号:CN201910059415.9

    申请日:2019-01-22

    Abstract: 本发明提供一种基于微波增强的场致发射推力器,包括:抽取极、发射极针管和底板,发射极针管穿透并固定在底板中心且位于底板上方,抽取极位于发射极针管上方,场致发射推力器还包括:套管、谐振腔外壳、微波馈入电缆和SMA微波输入接口,抽取极、谐振腔外壳和底板由上至下依次盖合形成圆柱形腔体,发射极针管位于谐振腔外壳轴心,套管套于发射极针管外,微波馈入电缆通过SMA微波输入接口进入谐振腔外壳内,并与套管的下端连接,谐振腔外壳内高为馈入微波的波长的四分之一,谐振腔外壳的内径小于馈入微波的波长的二分之一。本发明大大降低了胶体推力器的场致发射电压;同时,能够实现较高的比冲。

    一种微阴极电弧推进系统
    274.
    发明公开

    公开(公告)号:CN111348224A

    公开(公告)日:2020-06-30

    申请号:CN202010298568.1

    申请日:2020-04-16

    Abstract: 本发明公开了一种微阴极电弧推进系统,通过将传统微阴极电弧推进系统中的电感电路更换为电容电路,由于电容放电方式稳定,能够提高微阴极电弧推力器工作稳定性,并且由于电容在工作过程中内阻较小,从而降低电路额外功率消耗,提高了系统的效率。此外,由于采用脉冲电源,以脉冲方式供电,微阴极电弧推力器输入平均功率大幅降低。

    一种霍尔推力器安装支架

    公开(公告)号:CN109779863B

    公开(公告)日:2020-06-23

    申请号:CN201910098845.1

    申请日:2019-01-31

    Abstract: 一种霍尔推力器安装支架,属于霍尔推力器技术领域。本发明型解决了现有的霍尔推力器在空间受限的情况下供气管路和电路裸露在外面的问题。它包括支架主体和底板,所述支架主体包括水平设置的定位板及两个竖直设置在底板上方的支撑件,所述定位板的中部竖直开设有内径为上小下大的阶梯通孔,两个支撑件相对设置且其下部均固设在阶梯通孔的小孔内壁,每个支撑件均与阶梯通孔的小孔内壁随形设置,其中一个支撑件上开设有若干开口向上的豁口,另一个支撑件上水平开设有导线孔,每个支撑件的端部与另一个支撑件的端部之间均存在间隙,底板水平设置在阶梯通孔的大孔中且与定位板固接。

    一种大高径比霍尔推力器的磁屏结构

    公开(公告)号:CN111219304A

    公开(公告)日:2020-06-02

    申请号:CN201910204522.6

    申请日:2019-03-18

    Abstract: 一种大高径比霍尔推力器的磁屏结构,属于霍尔推力器技术领域。本发明解决现有采用大高径比设计霍尔推力器通道中径处的轴向磁场梯度低,推力器性能低的问题。本发明包括内磁屏、外磁屏和支撑件,内磁屏、外磁屏的圆心与支撑件的圆心重合,并且内磁屏、外磁屏和支撑件之间通过勾脚和扣槽的相互扣合固定构成内外嵌套的圆筒形结构。本发明在霍尔推力器采用大高径比设计的过程中,将内磁屏和外磁屏不用同一底面连接,不仅具有采用大高径比设计霍尔推力器的提高推力器推重比、减弱壁面侵蚀等优点,使得航天飞行器的有效载荷、使用寿命和机动灵活性有所提高,同时也提高了采用大高径比设计霍尔推力器通道中径处的轴向磁场梯度,提高了推力器的工作性能。

    一种金刚石壁面的低功率圆柱形霍尔推力器

    公开(公告)号:CN109826768B

    公开(公告)日:2020-04-24

    申请号:CN201910146374.7

    申请日:2019-02-27

    Abstract: 本发明提供的一种金刚石壁面的低功率圆柱形霍尔推力器,包括:永磁体、纯铁导磁上部、纯铁导磁底盘、阳极、陶瓷底座和金刚石通道,永磁体、纯铁导磁上部和金刚石通道均为环形件且同轴,纯铁导磁上部、永磁体和纯铁导磁底盘由上至下依次连接构成腔体,纯铁导磁底盘的中心沿中轴线向上延伸有一旋转支撑部,陶瓷底座位于腔体内,且陶瓷底座转动连接于旋转支撑部顶端,阳极安装在陶瓷底座上,金刚石通道安装在陶瓷底座的外缘上表面。本发明的通道壁面采取金刚石壁面材料,可使得等离子体对壁面轰击的影响减小,同时还可大幅提高推力器机械强度,有助于提升推进器的寿命。

    一种射频离子推力器及脉冲产生方法

    公开(公告)号:CN109630369B

    公开(公告)日:2020-01-14

    申请号:CN201910026143.2

    申请日:2019-01-11

    Abstract: 本发明提供一种射频离子推力器及脉冲产生方法,涉及离子推力器技术领域。射频离子推力器包括电离室、二极管、脉冲电压电路和低压放电电源;在射频离子推力器屏栅和加速栅之间引入脉冲工作的电压,利用脉冲电压引出离子,进而产生推力,通过调整占空比在不改变现有射频离子推力器结构的情况下,实现更小的平均输出推力。本发明的射频离子推力器及脉冲产生方法可以有效扩展现有射频离子体推力器的推力输出下边界,在不改变现有射频离子推力器结构和尺寸的情况下,实现更小的平均输出推力,同时避免实现微小推力输出时需要高压加速电源增大推力器尺寸的问题。

    一种面向炉机网协调的锅炉智能超前控制方法

    公开(公告)号:CN110118347A

    公开(公告)日:2019-08-13

    申请号:CN201910458774.1

    申请日:2019-05-29

    Abstract: 本发明公开了一种面向炉机网协调的锅炉智能超前控制方法,所述方法包括如下步骤:步骤一:分析超临界机组锅炉能量状态,采用主蒸汽压力的变化情况来描述和定义锅炉能量的增减;步骤二:分析机组能量状态,定义电网AGC指令与发电机组的实际功率之间的偏差为机组负荷跟随情况;步骤三:分析不同锅炉能量变化情况与机组负荷跟随情况下的组合情况,在锅炉燃烧率指令侧附加智能超前控制通道,对燃烧率指令进行超前控制。本发明可以在传统超前控制逻辑的基础上,考虑到主蒸汽压力的变化方向和机组负荷跟随情况,在保持原控制方法下机组负荷跟随能力的情况下同时追求主蒸汽压力的稳定,抑制其波动,进而延长锅炉寿命。

Patent Agency Ranking