-
公开(公告)号:CN114332989B
公开(公告)日:2025-04-08
申请号:CN202111495330.9
申请日:2021-12-08
Applicant: 重庆邮电大学
IPC: G06V40/16 , G06N3/0464 , G06V10/82 , G06V10/774 , G06N3/0475
Abstract: 本发明公开了一种多任务级联卷积神经网络的人脸检测方法及系统,将获取的人脸检测数据集分为训练集和测试集,采用多支路的扩张卷积结构对MTCNN网络中的P网络进行改进,利用训练集分别训练O网络、R网络和改进后的P网络的其中一条支路,得到MTCNN网络的最优参数;以此生成训练好的MTCNN网络;对测试集中的图片进行预处理,将预处理后的图片输入到训练好的MTCNN网络中进行人脸检测,输出检测结果,去除了极其耗时的图像金字塔结构,改之以多支路的扩张卷积代替,不再需要大量搬运数据来完成对图像的多次缩放,也不再需要多次重复的将图像输入到P‑net中,减少了无用操作,从而提高人脸检测的效率。
-
公开(公告)号:CN114492501B
公开(公告)日:2024-09-27
申请号:CN202111519739.X
申请日:2021-12-13
Applicant: 重庆邮电大学
IPC: G06F18/214 , G06F18/15 , G06F18/241 , G06F18/21 , G06N3/0464 , G06N3/08
Abstract: 本发明请求保护一种基于改进SMOTE算法的脑电信号样本扩充方法、介质及系统,使用脑电信号采集仪器采集脑电信号数据;对脑电信号进行包括带通滤波、基线校验、归一化在内的方法进行预处理,划分为测试数据集与训练数据集;使用改进的SMOTE算法对脑电信号进行样本筛选并作为原始样本;将样本分成safe、danger以及noise三种类型;使用幅频加噪技术对在原始样本的基础上合成人工样本,从而实现数据集的样本扩充,合并成为新的训练数据集;利用卷积神经网络进行性能测试。本发明相比其余传统脑电数据样本扩充方法能更有效地提升生成新样本的质量与数量,使得训练卷积神经网络时有效提取特征,提升分类准确度,一定程度上解决了脑电信号数据集样本量小的问题。
-
公开(公告)号:CN114254614B
公开(公告)日:2024-08-23
申请号:CN202111510160.7
申请日:2021-12-10
Applicant: 重庆邮电大学
IPC: G06F40/194 , G06F40/247 , G06F16/35
Abstract: 本发明公开了一种结合知网与词林的词语相似度获取方法及系统,利用《知网》义原层次树计算知网义原信息内容含量;并构建第一词语相似度计算模型;根据扩展版《同义词词林》词林拓扑树中的路径信息构建第二词语相似度计算模型;根据待测词语对在《知网》和扩展版《同义词词林》中的分布情况,综合两个计算模型的计算结果,获得待测词语对的最终词语相似度,在原本的信息内容含量的基础上引入义原节点的密度信息,能够得到更符合人类判断的词语相似度计算结果,同时在词林的计算过程中设置关于路径信息的权重参数,通过改变该参数的值,得到更高的皮尔森相关系数,更符合人类主观判断的结果,从而提高词语相似度的计算精度和范围。
-
公开(公告)号:CN114254187B
公开(公告)日:2024-08-16
申请号:CN202111506522.5
申请日:2021-12-10
Applicant: 重庆邮电大学
IPC: G06F16/9535 , G06F18/214 , G06N3/0464 , G06N3/042
Abstract: 本发明公开了基于自适应降噪训练的推荐方法、系统、电子设备及介质,涉及计算机技术领域,本发明在一个以图卷积神经网络为基础的推荐系统上,在训练阶段对损失函数做截断处理或重新加权处理,在模型的训练阶段自动地进行降噪处理。与现有技术相比而言,以往的推荐模型不考虑在训练阶段专门针对隐式反馈伴随的噪声问题进行处理;而本发明通过对损失函数进行截断或加权处理,以此来对打分函数进行优化处理,可以大大减少假阳性交互行给训练模型带来的噪声影响,不仅可以减少人工筛除假阳性交互行为的工作量,提升推荐的准确率,同时可缓解训练模型过早的出现过拟合现象。
-
公开(公告)号:CN117743818A
公开(公告)日:2024-03-22
申请号:CN202311847242.X
申请日:2023-12-28
Applicant: 重庆邮电大学
IPC: G06F18/2113 , A61B5/369 , G06F18/214 , G06F18/241 , G06N3/0464 , G06N3/096 , G06N3/0895
Abstract: 本发明请求保护一种基于多源域互信息的运动想象脑电信号域适应方法。首先通过互信息估计将特征提取器中间层的特征映射分解为类无关和类相关的特征映射;然后通过引入Lmmd损失对前馈网络模型进行扩展,实现子域适应。对于源域中的样本,使用真实标签来计算每个样本属于某一类的权重。对于没有标签的目标域数据,通过神经网络预测得到样本伪标签,其样本权重计算方法同源域样本权重计算,将网络的输出作为无标签目标域的伪标签。最后分别将每对源域和目标域数据映射到多个不同的特征空间,并对齐域特定分布以学习多个域不变特征。然后使用域不变特征训练多个特定于域的分类器。本方法可以有效减少跨受试者可变性高的问题。
-
公开(公告)号:CN114254187A
公开(公告)日:2022-03-29
申请号:CN202111506522.5
申请日:2021-12-10
Applicant: 重庆邮电大学
IPC: G06F16/9535 , G06K9/62 , G06N3/04
Abstract: 本发明公开了基于自适应降噪训练的推荐方法、系统、电子设备及介质,涉及计算机技术领域,本发明在一个以图卷积神经网络为基础的推荐系统上,在训练阶段对损失函数做截断处理或重新加权处理,在模型的训练阶段自动地进行降噪处理。与现有技术相比而言,以往的推荐模型不考虑在训练阶段专门针对隐式反馈伴随的噪声问题进行处理;而本发明通过对损失函数进行截断或加权处理,以此来对打分函数进行优化处理,可以大大减少假阳性交互行给训练模型带来的噪声影响,不仅可以减少人工筛除假阳性交互行为的工作量,提升推荐的准确率,同时可缓解训练模型过早的出现过拟合现象。
-
-
-
-
-