-
公开(公告)号:CN114295718B
公开(公告)日:2025-05-16
申请号:CN202111613525.9
申请日:2021-12-27
Applicant: 西安交通大学
Abstract: 本发明公开一种针对高速列车轨道的电磁超声/动生涡流复合检测系统及检测方法,该系统包括检测探头、电磁超声信号发生接收器、信号分离模块、驱动模块、信号调理模块和信号采集与处理模块;该方法采用电磁超声激励模式,并考虑到探头与列车轨道的高速相对运动激发动生涡流的特点,将检出线圈信号分离为电磁超声信号和动生涡流信号,从而得到轨道埋藏裂纹和表面裂纹的深度‑信号特征量标定曲线,最后基于标定曲线对待检轨道裂纹的埋藏/表面属性及深度值进行评估。本发明可同时检出轨道埋藏裂纹和表面裂纹,适用于高速运动列车轨道的检测,在轨道交通等领域拥有极大的应用前景。
-
公开(公告)号:CN119618089B
公开(公告)日:2025-04-15
申请号:CN202510161909.3
申请日:2025-02-14
Applicant: 西安交通大学
Abstract: 一种涡流‑激光‑液晶智能材料协同的热障涂层无损检测探头及方法,该检测探头包括涡流探头、激光测距探头和探头组合检测件固定装置;该方法对热障涂层陶瓷层厚度、介电常数与热障涂层下方金属基体性能进行综合无损评估。对热障涂层系统进行评估时,反演得到涡流探头至金属基体上表面之间的距离和涂层系统性能参数,借助液晶智能材料、激光测距探头测量激光测距探头与热障涂层陶瓷层上表面之间的距离以及激光测距探头与涡流探头的高度差,进而得到热障涂层陶瓷层厚度。本发明具备非接触、高精度和快速检测的特点,能够有效避免因探头与涂层表面之间的机械接触状态和表面粗糙度等不可控因素带来的机械测量误差,确保热障涂层和金属基体的精准评估。
-
公开(公告)号:CN115015323B
公开(公告)日:2024-08-02
申请号:CN202210619746.5
申请日:2022-06-02
Applicant: 中国工程物理研究院总体工程研究所 , 西安交通大学
IPC: G01N25/72 , G01N27/9013
Abstract: 复杂结构的涡流红外曲面适型无遮挡传感器及缺陷评价方法,该传感器由激励线圈与附有柔性导磁薄膜的可变形铁氧体磁轭组成。可变形铁氧体磁轭通过调节腿部旋转角度来适应复杂曲面被测体,调控管理磁路位形,消除激励线圈对目标区域温度场的遮挡。柔性导磁薄膜可协助管理磁路位形,同时保护待测曲面试件,避免试件表面被刚性铁氧体划伤。本发明还公开了缺陷评价方法,利用该传感器进行检测时,首先给感应加热单元施加激励,被检测试件在激励传感器作用下温度场发生变化;通过分析红外相机采集到的温度图像序列实现对曲面结构损伤的有效评价。本发明对复杂金属曲面结构表面或近表面亚毫米级微小点蚀性损伤提供了可靠、高精度无损评价方法,具有广泛应用前景。
-
公开(公告)号:CN118376681A
公开(公告)日:2024-07-23
申请号:CN202410458980.3
申请日:2024-04-17
Applicant: 西安交通大学 , 中国工程物理研究院总体工程研究所
IPC: G01N27/90 , G06F30/10 , G06F113/14 , G06F119/06 , G06F119/10
Abstract: 基于磁饱和脉冲涡流和信号处理的双金属复合管内衬塌陷检测方法,该方法由基于磁饱和的脉冲涡流方法和以晚期相关系数为自适应特征量的信号处理方法两部分组成;实现该方法时,首先利用磁轭对双金属复合管外层碳钢进行磁化直至磁饱和,减小外层碳钢与内层不锈钢间的磁阻,使脉冲涡流产生的磁场和涡流场能够穿透外层碳钢进入内层不锈钢,然后对脉冲涡流原始信号进行低通滤波、独立成分分析以及高斯滤波,分别消除高频噪声、工频干扰以及随机噪声,随后以双金属复合管无内衬塌陷情况下滤波后的脉冲涡流晚期信号为基准信号,计算待测双金属复合管滤波后的脉冲涡流晚期信号与基准信号的皮尔逊相关系数,并将该特征量称为晚期相关系数,最后用该特征量和相应的标定曲线来表征双金属复合管的内衬塌陷程度;本发明方法提出了一种经过优化的脉冲涡流方法以及自适应的特征量,实现了双金属复合管内衬塌陷检测,具有很高的理论价值和工程应用价值。
-
公开(公告)号:CN112946064B
公开(公告)日:2024-04-02
申请号:CN202110149701.1
申请日:2021-02-03
Applicant: 西安交通大学
Abstract: 本发明公开一种针对高速列车轨道的被动激励电磁无损检测系统和检测方法,该系统包括检测探头、检测辅助装置、驱动模块、信号调理模块和信号采集与处理模块;该方法首先将检测探头以给定提离固定在轨检轮式夹具,驱动轨检车相对标定轨道运动,并将检测探头的检出线圈电压信号通过信号调理和采集与处理模块记录,得到裂纹深度‑信号特征量标定曲线,然后对待检轨道进行检测,得到电压信号;最后基于标定曲线提取实验所得特征量对应的待检轨道裂纹深度值。本发明通过检测探头的永磁体与被测轨道的相对运动作为激励,简单易行且优势突出,适用于高速运动列车轨道的无损检测,在特种设备和轨道交通等领域拥有极大的应用前景,将带来巨大的社会效益。
-
公开(公告)号:CN113433212B
公开(公告)日:2023-08-01
申请号:CN202110706287.X
申请日:2021-06-24
Applicant: 西安交通大学 , 新疆维吾尔自治区特种设备检验研究院
IPC: G01N27/90 , G01N27/9013
Abstract: 抗干扰强的均匀场激励方向性涡流探头及检测方法,该探头含激励部分和检出部分,激励部分由矩形骨架和多匝导线均匀绕制而成矩形激励线圈;检出部分由两个轴线与待测金属构件法向垂直且具有相同绕向的盘式小线圈组成,以矩形激励线圈下表面的中间导线为对称轴对称分布。检测时,向矩形激励线圈通入激励信号,线圈下方的待测金属构件感应出相对均匀的涡流场;由于矩形激励线圈足够大,因此无缺陷时两个检出线圈的检出信号近似相同;有缺陷时,缺陷会对均匀涡流场产生扰动,取两个盘式小线圈的差分信号为目标信号,一方面可增强检测灵敏度,同时可有效减弱提离噪声的影响。通过旋转探头,分析扫查方向和扫查信号的关系,实现缺陷的方向性识别。
-
公开(公告)号:CN113433212A
公开(公告)日:2021-09-24
申请号:CN202110706287.X
申请日:2021-06-24
Applicant: 西安交通大学 , 新疆维吾尔自治区特种设备检验研究院
IPC: G01N27/90 , G01N27/9013
Abstract: 抗干扰强的均匀场激励方向性涡流探头及检测方法,该探头含激励部分和检出部分,激励部分由矩形骨架和多匝导线均匀绕制而成矩形激励线圈;检出部分由两个轴线与待测金属构件法向垂直且具有相同绕向的盘式小线圈组成,以矩形激励线圈下表面的中间导线为对称轴对称分布。检测时,向矩形激励线圈通入激励信号,线圈下方的待测金属构件感应出相对均匀的涡流场;由于矩形激励线圈足够大,因此无缺陷时两个检出线圈的检出信号近似相同;有缺陷时,缺陷会对均匀涡流场产生扰动,取两个盘式小线圈的差分信号为目标信号,一方面可增强检测灵敏度,同时可有效减弱提离噪声的影响。通过旋转探头,分析扫查方向和扫查信号的关系,实现缺陷的方向性识别。
-
公开(公告)号:CN108896459B
公开(公告)日:2020-10-23
申请号:CN201810550687.4
申请日:2018-05-31
Applicant: 西安交通大学
IPC: G01N15/06
Abstract: 基于交变磁场脉冲红外的磁性水凝胶磁性粒子浓度检测方法,首先对含不同浓度磁性粒子的磁性水凝胶进行交变磁场激励,并利用红外相机记录磁性水凝胶表面温度变化时间历程,得到磁性水凝胶表面温升速率‑磁性粒子浓度标定曲线;然后根据磁性水凝胶表面温升速率‑磁性粒子浓度标定曲线确定磁性粒子浓度‑磁性水凝胶表面温升速率模型;最后将待测磁性水凝胶表面温升速率代入磁性粒子浓度‑磁性水凝胶表面温升速率模型即可确定待测磁性水凝胶的磁性粒子浓度;本发明能够为磁性水凝胶中的磁性粒子浓度的定量检测提供可靠的方法,具有无损、高效、非接触、检测范围大、检测精度高等优点,可广泛应用于磁性水凝胶磁性粒子的浓度检测中。
-
公开(公告)号:CN108613646B
公开(公告)日:2019-08-06
申请号:CN201810527185.X
申请日:2018-05-28
Applicant: 新疆维吾尔自治区特种设备检验研究院 , 西安交通大学
IPC: G01B17/02
Abstract: 一种针对粗糙表面金属测厚的阵列电磁超声共振探头及方法,该探头包括永磁体、激励线圈、检出线圈阵列组以及柔性材料骨架;激励线圈在永磁体的底部中心位置;检出线圈阵列组由多个检出线圈组成,多个检出线圈环绕分布在激励线圈周围构成检出线圈阵列;永磁体产生较强的恒定磁场,当激励线圈通入脉冲激励电流时,试件的上表面会产生涡流,涡流在永磁体的恒定磁场作用下会产生洛伦兹力,引发质点振动,进而在试件上表面产生超声波;超声波在导电材料中传播,遇到粗糙的金属下表面便会被反射出多束超声回波,反射回来的多束超声回波分别被环绕分布在激励线圈周围的阵列检出线圈接收,经过信号处理可计算出导电材料粗糙表面处的厚度分布。
-
公开(公告)号:CN108051648B
公开(公告)日:2018-12-18
申请号:CN201711258187.5
申请日:2017-12-01
Applicant: 西安交通大学 , 新疆维吾尔自治区特种设备检验研究院
IPC: G01R27/08 , G01R33/022
Abstract: 一种基于直流电位和涡流检测法的材料电磁属性测量方法,该方法实验装置由直流电位法装置和涡流检测法装置组成;实现该方法时,首先通过直流电位法装置中的恒流源给试件施加恒定电流激励,用纳伏表采集电压信号,通过计算可得到试件的电导率;然后通过涡流检测法装置中的激励线圈给试件施加激励,再用检出线圈检出电压信号;由于检出线圈的电压信号与试件的电导率和磁导率均相关,所以在由直流电位法测得试件电导率的前提下就可以对涡流检出信号通过共轭梯度法反演求得材料的磁导率;相较于传统的试件电导率和磁导率的测量方法,本发明方法能达到同时测量磁性材料电导率和磁导率的目的,而且激励频率可调,具有广泛的应用前景。
-
-
-
-
-
-
-
-
-