-
公开(公告)号:CN114972790A
公开(公告)日:2022-08-30
申请号:CN202210625461.2
申请日:2022-06-02
Applicant: 电子科技大学长三角研究院(衢州)
IPC: G06V10/44 , G06V10/764 , G06V10/774 , G06V10/776 , G06V10/82 , G06N3/04
Abstract: 本发明的实施例提供了一种图像分类模型训练方法、图像分类方法、电子设备及存储介质,涉及计算机视觉领域。获取已标注类型标签的多张图像样本。针对每一张图像样本,将图像样本输入至图像分类模型,在图像分类模型中的任意一层卷积层中,从图像样本中提取出多张具有不同通道的特征图像。其中,不同通道表征图像样本不同的图像特征。利用预测得到的图像样本的类型标签和特征图像的类型标签,以及该图像样本已标注的类型标签,计算得到图像分类模型的损失值,基于该损失值调整图像分类模型的参数。重复执行上述步骤,以使可以达到预期训练目标。如此,由于没有增加输入图像分类模型的图像样本的数量,使得每次模型训练耗费的时间更少。
-
公开(公告)号:CN119400366A
公开(公告)日:2025-02-07
申请号:CN202411500354.2
申请日:2024-10-25
Applicant: 电子科技大学长三角研究院(衢州)
IPC: G16H30/40 , G16H50/50 , G06N3/096 , G06T7/00 , G06V10/774 , G06V10/82 , G06V10/764
Abstract: 本发明涉及一种利用术前CT图像对转换疗法进行预测的方法,属于图像处理领域,包括:对数据进行预处理得到用于对深度学习模型进行训练的图像;在知识蒸馏的基础上加入多次模型迭代,并引入标签平滑、余弦动态学习率调整和模型噪声,得到对模型进行训练的渐进式蒸馏方法;按照设定比例划分的训练集和测试集对采用EfficientNet并加载ImageNet的模型进行多轮次训练和测试,并通过经过多轮次训练和测试后的最终模型进行预测,得到预测结果。本发明能够将原发性肿瘤的计算机断层扫描征象与人工智能相结合,预测胃癌晚期患者对转换疗法的反应,产生很好的诊断效果。
-
公开(公告)号:CN119067992A
公开(公告)日:2024-12-03
申请号:CN202411174674.3
申请日:2024-08-26
Applicant: 电子科技大学长三角研究院(衢州) , 衢州学院
IPC: G06T7/11 , G06T5/70 , G06V10/774 , G06V10/764 , G06V10/82 , G06N3/0895
Abstract: 本发明公开了一种应用深度学习在CT切片图像上分割肝脏肿瘤的方法。该方法引入了一个名为MPVT+的神经网络框架,用于在带有噪声标签的数据集上训练肝脏肿瘤的分割模型。通过使用对噪声具有鲁棒性的适配器模型方法,MPVT+模型能够有效地适配并筛选训练数据集中的噪声标签,从而减少噪声对神经网络的干扰。此外,MPVT+模型还通过半监督学习方法增强其泛化能力,使其能够高效地学习复杂的CT切片图像特征。在测试数据集上,该模型的索伦森‑戴斯系数为80.29%,雅卡尔指数为68.68%,对称体积差为19.71%,体积重叠误差为31.32%。该模型可以无创地使用CT图像分割并定位肝脏内的肿瘤,从而成为帮助医生制定各种肝脏肿瘤治疗策略的潜在工具。
-
公开(公告)号:CN118379208B
公开(公告)日:2024-10-29
申请号:CN202410816691.6
申请日:2024-06-24
Applicant: 电子科技大学长三角研究院(衢州)
Abstract: 本发明公开了一种基于混合损失函数扩散模型的增强CT图像生成方法及装置,该方法包括:采集CT图像数据及其配对的造影剂增强CT图像数据,并采用数据增强方法和面向数据的正则化方法对其进行预处理,以按比例划分为训练集、测试集和验证集;构建用于生成造影剂增强CT图像的扩散模型;使用训练集对扩散模型进行迭代训练,基于混合损失函数调整扩散模型的参数,以获取训练好的扩散模型;将测试集中的CT图像数据输入至训练好的扩散模型中,得到对应的造影剂增强CT图像数据。本发明能够生成清晰可靠的造影剂增强CT图像,能够更好地捕捉数据分布的特征,提高了对不同特征的感知能力,增强了合成图像的质量,提高了模型的泛化性。
-
公开(公告)号:CN117196987A
公开(公告)日:2023-12-08
申请号:CN202311187498.2
申请日:2023-09-14
Applicant: 电子科技大学长三角研究院(衢州)
IPC: G06T5/00 , G06T7/00 , G06V10/30 , G06N3/0464 , G06N3/084
Abstract: 本发明公开了一种低剂量CT图像去噪方法,包括以下步骤:S1:建立数据集,设定带有噪声的LDCT图像集合x,和与LDCT图像集合x对应的高质量的NDCT图像集合y;S2:搭建参数为θ的去噪模型 使用模构建 的映射;S3:使用混合损失训练去噪模型 设置学习率和动量参数,采用误差反向传播训练去噪模型 达到迭代最大次数,生成训练好的去噪模型;S4:图像去噪;将测试集中的LDCT图像预处理后,输入至训练好的去噪模型,得到对应的去噪后图像,本申请提出的去噪方法考虑到了图像不同区域的去噪难度,通过添加权重的方式对其进行自适应平衡,并通过高频信息损失促进图像纹理细节的生成,避免去噪后图像变得过度平滑。
-
公开(公告)号:CN117174301A
公开(公告)日:2023-12-05
申请号:CN202310569396.0
申请日:2023-05-19
Applicant: 电子科技大学长三角研究院(衢州)
Abstract: 本发明公开了基于深度学习的术中肺恶性肿瘤热消融疗效预测的方法,其特征在于,包括获得热消融CT图像;在热消融CT图像上感兴趣区域及感兴趣区域图像;将持续获得的热消融CT图像批量转换为jpg格式的图像,将感兴趣区域图像与热消融图像相结合,得到高亮感兴趣区域的CT图像,收集多名患者的热消融CT图像和高亮感兴趣区域的CT图像,进行剪裁得到分割图像;将分割图像输入深度残差网络,得到输出特征;对输出特征使用归一化指数函数后,得到分类概率,根据分类概率得到肺癌热消融的预测结果;在测试平台上进行测试,最终得到训练完成的深度残差神经网络模型。将患者的病灶CT图像输入训练完成的深度残差神经网络模型后,得出肺癌热消融预测效果。
-
公开(公告)号:CN116664523A
公开(公告)日:2023-08-29
申请号:CN202310642810.6
申请日:2023-06-01
Applicant: 电子科技大学长三角研究院(衢州)
IPC: G06T7/00 , G06T7/11 , G06V10/774 , G06V10/82 , G06V10/764 , G16H50/20
Abstract: 本发明公开了基于深度学习构建肾透明细胞癌分级模型的方法,包括获取肾透明癌细胞患者的CT图像;CT图像进行切割,获得切割图像;对切割图像进行旋转生成操作并标注,基于RegNetY400MF、RegNetY800MF、SE‑ResNet50和ResNet101四类网络模型,以普通交叉熵为损失函数,使用旋转后的切割图像对四类网络模型进行预训练;在普通的交叉熵中加入噪声修正策略作为损失函数,对经过预训练的四类网络模型进行实际训练;实际训练完成后的四类网络模型基于输出概率最大的CT图像对患者的病理进行诊断,获得四类网络模型的表现AUC;以四类网络模型的表现AUC作为其权重,对患者的最终诊断进行加权计算,得到其最终诊断,本申请实现了更有效的模型集成,达到了更好的最终预测准确度。
-
公开(公告)号:CN116489710A
公开(公告)日:2023-07-25
申请号:CN202310453898.7
申请日:2023-04-25
Applicant: 电子科技大学长三角研究院(衢州)
IPC: H04W28/084 , H04L41/16 , H04L41/0894 , H04L67/12 , G06N3/045 , G06N3/0442 , G06N3/048 , G06N3/092
Abstract: 本发明公开了一种用于移动边缘云计算中资源分配的方法,该方法基于两级串联队列系统,利用强化学习算法深度确定性策略梯度来学习最优的计算资源分配策略,通过使用门控循环单元来捕捉两个处理队列之间的关联关系,同时考虑了移动边缘云计算网络的复杂动态性,且不限制计算任务迁移请求的到达时间满足特定的分布,因此,本发明提出的移动边缘云计算网络资源分配方法,在强化学习训练完成后,能够自动地根据请求的到达和资源变化来分配合理的计算资源以满足端到端延迟的需求,这对于实现在端设备运行复杂的应用程序并节省计算资源至关重要。
-
公开(公告)号:CN114972790B
公开(公告)日:2024-12-20
申请号:CN202210625461.2
申请日:2022-06-02
Applicant: 电子科技大学长三角研究院(衢州)
IPC: G06V10/44 , G06V10/764 , G06V10/774 , G06V10/776 , G06V10/82 , G06N3/0464
Abstract: 本发明的实施例提供了一种图像分类模型训练方法、图像分类方法、电子设备及存储介质,涉及计算机视觉领域。获取已标注类型标签的多张图像样本。针对每一张图像样本,将图像样本输入至图像分类模型,在图像分类模型中的任意一层卷积层中,从图像样本中提取出多张具有不同通道的特征图像。其中,不同通道表征图像样本不同的图像特征。利用预测得到的图像样本的类型标签和特征图像的类型标签,以及该图像样本已标注的类型标签,计算得到图像分类模型的损失值,基于该损失值调整图像分类模型的参数。重复执行上述步骤,以使可以达到预期训练目标。如此,由于没有增加输入图像分类模型的图像样本的数量,使得每次模型训练耗费的时间更少。
-
公开(公告)号:CN118379208A
公开(公告)日:2024-07-23
申请号:CN202410816691.6
申请日:2024-06-24
Applicant: 电子科技大学长三角研究院(衢州)
Abstract: 本发明公开了一种基于混合损失函数扩散模型的增强CT图像生成方法及装置,该方法包括:采集CT图像数据及其配对的造影剂增强CT图像数据,并采用数据增强方法和面向数据的正则化方法对其进行预处理,以按比例划分为训练集、测试集和验证集;构建用于生成造影剂增强CT图像的扩散模型;使用训练集对扩散模型进行迭代训练,基于混合损失函数调整扩散模型的参数,以获取训练好的扩散模型;将测试集中的CT图像数据输入至训练好的扩散模型中,得到对应的造影剂增强CT图像数据。本发明能够生成清晰可靠的造影剂增强CT图像,能够更好地捕捉数据分布的特征,提高了对不同特征的感知能力,增强了合成图像的质量,提高了模型的泛化性。
-
-
-
-
-
-
-
-
-