-
公开(公告)号:CN109944249A
公开(公告)日:2019-06-28
申请号:CN201910258173.6
申请日:2019-04-01
Applicant: 清华大学 , 中国三峡建设管理有限公司
IPC: E02D15/02
Abstract: 本发明属于水利水电工程智能通水温控施工技术领域,提供了一种大坝热交换媒介温度自适应调整方法。所述方法包括:选定第一混凝土块和第二混凝土块;热交换媒介供应站向所述第一混凝土块提供第一温度热交换媒介进行冷却,冷却完成后得到第二温度热交换媒介;当所述第二温度热交换媒介的温度高于所述第二混凝土块的温度时,所述第二温度热交换媒介直接流回所述热交换媒介供应站;当所述第二温度热交换媒介的温度低于所述第二混凝土块的温度时,所述第二温度热交换媒介流入所述第二混凝土块进行冷却后流回所述热交换媒介供应站。有益效果:快速向大坝提供多种水温,实现制冷回水再利用,减少管道布置,节省栈桥布置,提高大坝建设的安全性。
-
公开(公告)号:CN101944743A
公开(公告)日:2011-01-12
申请号:CN201010291701.7
申请日:2010-09-21
Inventor: 王钢 , 梅生伟 , 苏辛一 , 张雪敏 , 陶家琪 , 何光宇 , 贾伟 , 高德宾 , 刘家庆 , 孟令愚 , 侯凯元 , 杨宁 , 李泽宇 , 邵广惠 , 徐兴伟 , 马新 , 彭晓洁 , 郗郅 , 夏德明 , 岳涵
CPC classification number: Y02E40/34
Abstract: 本发明涉及电力系统自动电压控制技术领域,具体涉及一种电网自动电压控制系统间的协调量设计方法及其实施方法,所述协调量为电压区域控制偏差,由不同区域、不同层次的自动电压控制系统间的边界节点电压和外区域注入本区域无功的加权和构成。本发明通过该协调量能够判断无功扰动发生在区域内还是区域外,并衡量本区域控制动作对相邻区域无功影响的方向和大小,每个控制区只负责控制本区域内的无功扰动,使考核公平,由此明确区域控制责任、减小耦合,达到协调控制的目的。
-
公开(公告)号:CN115752568B
公开(公告)日:2025-01-21
申请号:CN202211348097.6
申请日:2022-10-31
Applicant: 中国三峡建工(集团)有限公司 , 清华大学 , 三峡大学
Abstract: 本发明提供了一种高拱坝施工期安全监测自动化系统及建立方法,所述系统包括:坝踵应力检测模块、坝体倒悬变形检测模块、监测中心站、无线传输基站、仓面传感器检测自动化模块和廊道监测自动化模块;本发明将实现坝址区域大范围、全过程自动化采集和实时在线分析,全面掌握包括大坝及坝基变形、渗流、温度、应力应变、坝基开挖回弹变形、坝体倾倒变形等性状,辅助进行大坝工程建设安全仿真,监控工程风险,指导大坝施工及蓄水和运行,避免大坝坝体及基础部位出现危害性裂缝和变形失稳。
-
公开(公告)号:CN115752568A
公开(公告)日:2023-03-07
申请号:CN202211348097.6
申请日:2022-10-31
Applicant: 中国三峡建工(集团)有限公司 , 清华大学 , 三峡大学
Abstract: 本发明提供了一种高拱坝施工期安全监测自动化系统及建立方法,所述系统包括:坝踵应力检测模块、坝体倒悬变形检测模块、监测中心站、无线传输基站、仓面传感器检测自动化模块和廊道监测自动化模块;本发明将实现坝址区域大范围、全过程自动化采集和实时在线分析,全面掌握包括大坝及坝基变形、渗流、温度、应力应变、坝基开挖回弹变形、坝体倾倒变形等性状,辅助进行大坝工程建设安全仿真,监控工程风险,指导大坝施工及蓄水和运行,避免大坝坝体及基础部位出现危害性裂缝和变形失稳。
-
公开(公告)号:CN110820846A
公开(公告)日:2020-02-21
申请号:CN201911112837.4
申请日:2019-11-14
Applicant: 中国三峡建设管理有限公司 , 清华大学 , 中清控(武汉)科技有限公司 , 中国水利水电第八工程局有限公司 , 中国水利水电第四工程局有限公司
Abstract: 本发明公开了一种坝后供水管网优化设计方法,所述方法包括:仓内管路设计、连接管设计、智能通水系统设计、供水包设计、坝后供水主管设计、供水主管网设计、水流换向设计、制冷水站设计、管网监控及管道交通设计流程。通过对坝后供水管网的系统设计,提供了更加精细、智能的供水保障,可显著提升大坝混凝土通水冷却的效率与质量,解决了现有技术中坝后供水管网管路布置复杂、连接件多、运行状态不可知以及控制不精准等技术问题。
-
公开(公告)号:CN104353199B
公开(公告)日:2017-04-19
申请号:CN201410465675.3
申请日:2014-09-12
Applicant: 清华大学 , 中国长江三峡集团公司
IPC: A62B35/00
Abstract: 本发明提出一种安全防护装置,包括:安全带、多个MEMS运动感测组件、压力传感器、处理器和报警装置。安全带的一端具有固定在悬挂物上的第一固定件且另一端具有固定在施工人员身体上的第二固定件。压力传感器检测第一固定件和第二固定件承受的压力从而判定是否为锁紧状态。多个MEMS运动感测组件检测安全带的形态参数而判断安全带的形态。当第一固定件和第二固定件为锁紧状态时,处理器根据安全带的形态参数判断安全带是否正确佩戴。当处理器判断安全带未锁紧和/或未正确佩戴时,报警装置进行报警。本发明的装置,结构简单、易于实现、能够准确地判断安全带是否正确佩戴。
-
公开(公告)号:CN117252464A
公开(公告)日:2023-12-19
申请号:CN202311194133.2
申请日:2023-09-15
Applicant: 中国三峡建工(集团)有限公司 , 清华大学
IPC: G06Q10/0639 , G06Q50/08 , G06F30/13 , G06F30/27 , G06N3/04 , G06N3/08 , G06F119/14
Abstract: 本发明提供了一种大坝混凝土层间结合质量预测及控制方法,包括以下步骤:步骤1,层间结合质量预测:基于深度学习方法,对混凝土的层间结合质量进行预测;步骤2,层间结合质量预警:基于步骤1中混凝土的层间结合质量预测结果,对混凝土层间结合质量于标准值进行比对,以对层间结合质量进行预警;步骤3,层面处理措施:针对混凝土层间结合质量预警结果,采取相应的措施来保证混凝土层间结合质量。
-
公开(公告)号:CN109992900B
公开(公告)日:2021-08-31
申请号:CN201910274643.8
申请日:2019-04-08
Applicant: 清华大学 , 中国三峡建设管理有限公司
IPC: G06F30/23
Abstract: 本发明公开了一种大体积混凝土多场实时在线协同智能仿真方法和系统。所述方法包括:步骤S1:感知步骤,模型建立和真实感知输入;步骤S2:分析步骤,待定参数初始化及仿真计算分析;步骤S3:评价步骤,仿真结果真实度评价;步骤S4:反馈步骤,仿真结果判断与过程优化调整;步骤S5:控制步骤,进行闭环智能控制;步骤S6:学习步骤,对前述步骤进行学习,开始新的循环。通过上述步骤的动态循环,提高了传统仿真分析的频率、精度以及仿真结果的应用效率,实现了对仿真对象的真实感知、智能分析和动态控制,可应用于大型土木、水利结构工程智能建造、全生命周期仿真分析等。
-
公开(公告)号:CN112414327A
公开(公告)日:2021-02-26
申请号:CN202011290072.6
申请日:2020-11-17
Applicant: 中国三峡建设管理有限公司 , 清华大学
IPC: G01B11/30
Abstract: 本发明提供了一种手持式混凝土粗糙度三维检测装置及方法,它包括摄像机安装板,所述摄像机安装板的底端面对称固定安装有第一摄像机组件和第二摄像机组件,所述第一摄像机组件和第二摄像机组件之间的位置固定有用于定位的激光器,所述摄像机安装板通过连接板与手持结构相连;还包括用于定位扫描位置的标定板,所述标定板与第一摄像机组件、第二摄像机组件和激光器相配合,并实现设定区域混凝土表面的三维扫描。此检测装置将混凝土粗糙情况利用三维激光扫描数字化,进而获取混凝土表面的三维点云数据,进而计算得到混凝土表面粗糙度,达到精确测量混凝土表面的粗糙度目的。
-
公开(公告)号:CN110532678B
公开(公告)日:2021-02-02
申请号:CN201910800379.7
申请日:2019-08-28
Applicant: 清华大学 , 中国三峡建设管理有限公司
IPC: G06F30/13 , G06F30/20 , G06F119/14
Abstract: 本发明属于水利工程技术领域,具体涉及一种特高拱坝基坑回填方法。所述方法包括:对特高拱坝的坝面进行检查,对基坑回填区域进行分区分层,初步选取基坑回填材料、回填高程和回填时机,确定i个基坑回填方案;分析对比所述i个基坑回填方案的渗流折减效应、保温效应、静力荷载效应和动力荷载效应;依据对比结果确定最优高程和回填时机,选择最优基坑回填方案。本发明的有益效果在于:该基坑回填方法可补强基岩裂隙,增强大坝防渗能力;减小坝体接触面热交换系数,增加坝面保温效果,有利温控防裂;改善施工期大坝抗震稳定性及坝‑基整体工作性态。
-
-
-
-
-
-
-
-
-