-
公开(公告)号:CN108689703A
公开(公告)日:2018-10-23
申请号:CN201810668019.1
申请日:2018-06-26
Applicant: 桂林电子科技大学
IPC: C04B35/468 , C04B35/622
CPC classification number: C04B35/468 , C04B35/622 , C04B2235/3208 , C04B2235/3227 , C04B2235/3262 , C04B2235/3293 , C04B2235/72
Abstract: 本发明公开了一种具有巨介电常数及电调特性的无铅铁电陶瓷材料及其制备方法,该陶瓷材料组成为:(1‑x)BaTi0.90Sn0.10O3‑xCa2LaMn2O7;其中x表示摩尔分数,0.01
-
公开(公告)号:CN107010947A
公开(公告)日:2017-08-04
申请号:CN201710302249.1
申请日:2017-05-02
Applicant: 桂林电子科技大学
IPC: C04B35/49
Abstract: 本发明公开了一种具有临界突变开关效应的无铅铁电陶瓷材料及其制备方法,材料配方为:Bi1/2Na1/2Ti0.85(Li1/4Nb3/4)0.05(Zr1/2Zn1/2)0.10O3;通过B位与Ti4+离子相同化合价的复合离子(Li1/4Nb3/4)4+,以及不同化合价复合离子(Zr1/2Zn1/2)3+,严格以1:2的比例,在B位取代Ti4+离子,产生不同带电缺陷类型,形成相邻晶胞缺陷有序排列,产生电子和空穴补偿型的带电电畴(非空位或者离子补偿效应),因而出现特殊的临界开关效应的电场诱导巨应变行为。制得产品经实验测量具有电场诱导的巨应变性能,应变量可达S%=0.47%,同时具有在临界开关电场EC=56kV/cm巨应变发生,并且在很窄的电场范围内ΔE=2kV/cm发生完全应变,在临界区域,应变变化率α可达2.8×103。这些性能目前还未见报道,可以在特殊的场合应用。
-
公开(公告)号:CN104710174B
公开(公告)日:2017-05-17
申请号:CN201510104203.X
申请日:2015-03-10
Applicant: 桂林电子科技大学
IPC: C04B35/475 , C04B35/622 , C04B35/64
Abstract: 本发明公开了一种高压电、高储能密度无铅陶瓷介质材料,成分以通式(0.95‑x‑y‑z)Bi0.5Na0.5TiO3–xBi0.5K0.5 TiO3 –yBa0.65Sr0.35Ti‑O3–zK0.5Na0.5NbO3 –0.05LiTaO3来表示,其中x、y、z表示摩尔分数,0.002≤x≤0.3,0.002≤y≤0.2,0.001≤z≤0.3。本发明采用放电等离子烧结,可在低烧结温度下获得均匀致密的陶瓷组织。本发明的压电、高储能密度陶瓷具有优异的储能密度、储能效率及高压电常数,储能密度可达1.75J/cm3,储能效率可达65%,压电常数d33可达682pm/V、实用性好。
-
公开(公告)号:CN104710172A
公开(公告)日:2015-06-17
申请号:CN201510103499.3
申请日:2015-03-10
Applicant: 桂林电子科技大学
IPC: C04B35/475 , C04B35/622
Abstract: 本发明公开了一种室温高压反铁电高储能密度无铅陶瓷介质材料及其制备方法,成分以通式(BixNay)AgzTi0.98-mO3-mBaTiO3-0.02SrZrO3+n(0.5MnO2-0.3La2O3-0.2Nb2O5)来表示,其中x、y、z、m、 n表示摩尔分数,x=0.48,0.49;y=(0.46-z),(0.44-z),(0.46-z),(0.42-z);x与y分别取值: x/y= 0.48/(0.46-z),0.48/(0.44-z),0.49/(0.46-z),0.49/(0.44-z),0.49/(0.42-z);0.005≤z≤0.01;0.04≤m≤0.09;0.001≤n≤0.02。本发明采用纳米单晶颗粒BaTiO3粉体,通过两歩烧结,获得了多层芯壳结构,通过高场诱发反铁电相变,获得很高的储能密度及储能效率。本发明制备工艺简单、稳定,适合工业推广应用。本发明的陶瓷组成是一种绿色环保型储能陶瓷介质,耐压性好,损耗低,在脉冲高压电源领域具有很好的应用前景。
-
公开(公告)号:CN104710171A
公开(公告)日:2015-06-17
申请号:CN201510103056.4
申请日:2015-03-10
Applicant: 桂林电子科技大学
IPC: C04B35/475 , C04B35/622
Abstract: 本发明公开了一种高储能密度钛酸锶铋基复相陶瓷介质材料及其制备方法,成分以通式(1-x-y)Sr1-1.5z(Bi0.8La0.2)zTiO3-x(Bi0.5Na0.5)1-mMgmTiO3-yBi0.5Li0.5(Ti0.92Mn0.08)O3来表示,其中x、y、z、m表示摩尔分数,0.2≤x≤0.7;0.01≤y≤0.2;0.05≤z≤0.3;0.02≤m≤0.2。本发明通过成分调节,形成复相组成,采用微波烧结形成均匀细小晶粒的致密结构,即保持高的介电常数,有获得高的耐压。本发明制备工艺简单、稳定,适合工业推广应用。本发明的高储能密度复相陶瓷介质材料,具有优异的储能特性及储能效率,储能密度可达1.9J/cm3,储能效率可达65%,环境友好、损耗低、实用性好。
-
公开(公告)号:CN108706971B
公开(公告)日:2021-01-05
申请号:CN201810670093.7
申请日:2018-06-26
Applicant: 桂林电子科技大学
IPC: C04B35/475 , C04B35/622
Abstract: 本发明公开了一种具有大压电应变记忆特性的无铅铁电陶瓷材料及其制备方法,该陶瓷材料组成为:Bi0.53Na0.5TiO3+0.05wt%LiVO3+0.1wt%MnO2。用微波快速烧结结合快速水冷制得,产品经实验测量,具有非常优异的压电应变记忆特性,最大压电应变记忆效应ΔS=0.46%,工艺简单,成本低廉,适合大规模工业生产。
-
-
公开(公告)号:CN107151138B
公开(公告)日:2020-07-10
申请号:CN201710301046.0
申请日:2017-05-02
Applicant: 桂林电子科技大学
IPC: C04B35/468 , C04B35/622 , C04B35/634 , C04B41/88 , C04B41/80 , H01L41/187
Abstract: 本发明公开了一种低损耗超高压电性能无铅压电陶瓷材料及其制备方法,配方为:0.95Ba(Ti0.89Sn0.11)O3‑0.05Bi2WO6+0.5%Mn+0.5%Cu,通过加入Bi2WO6,促进烧结,获得致密,晶粒均匀的陶瓷材料,结合化学包覆法,在合成的0.95Ba(Ti0.89Sn0.11)O3颗粒表面,采用化学包覆法获得Mn/Cu表面包覆颗粒,合成时形成梯度分级结构,抑制Sn的变价,即克服了该体系漏电流大的问题,也同时提高压电性能,降低介电损耗,解决了该体系绝缘性差,难以极化等难题。该陶瓷材料具有超高压电性能,同时具有超低介电损耗,环境友好型、稳定性好。
-
公开(公告)号:CN108558391A
公开(公告)日:2018-09-21
申请号:CN201810668020.4
申请日:2018-06-26
Applicant: 桂林电子科技大学
IPC: C04B35/468 , C04B35/628 , C04B35/622 , C04B41/88
CPC classification number: C04B35/4682 , C04B35/622 , C04B35/62842 , C04B35/62886 , C04B35/62894 , C04B41/5116 , C04B41/88 , C04B2235/3208 , C04B2235/3213 , C04B2235/3241 , C04B2235/3293 , C04B2235/656 , C04B2235/667 , C04B2235/96
Abstract: 本发明公开了一种具有巨压电响应的无铅压电陶瓷材料及其制备方法,材料组成为:Ba0.975Sr0.005Ca0.02Ti0.87Sn0.12Cr0.01O3+0.05wt%Co+0.05wt%Cu。其中Ba0.975Sr0.005Ca0.02Ti0.87Sn0.12Cr0.01O3通过固相合成法,Co与Cu分别以沉淀的形式在表面二次包覆形成,通过烧结技术产生特殊的分级次梯度结构,产生巨压电效应,这些性能目前超过了所有报道的无铅压电陶瓷。产品经实验测量,具有非常优异的压电性能,准静态压电常数d33=1820pC/N,压电应变常数 =2032pm/V,性能稳定,成本低廉,适合大规模工业生产。
-
公开(公告)号:CN107032786A
公开(公告)日:2017-08-11
申请号:CN201710330694.9
申请日:2017-05-11
Applicant: 桂林电子科技大学
IPC: C04B35/475 , C04B35/622 , C04B35/64 , C04B41/88
Abstract: 本发明公开了一种同时具有高压电性能与高机械品质因数的低烧无铅压电陶瓷,其特征在于,组成通式为:(1‑x)(Bi0.5Na0.5)1‑2y(LiAl0.5Y0.5)yTiO3‑ xBa(Ti0.9Mn0.1)O3+z(0.6BiVO4‑0.4CuO)来表示,其中x、y、z表示摩尔分数,0
-
-
-
-
-
-
-
-
-