基于LSTM-prophet的网站访问量预测方法及系统

    公开(公告)号:CN113949644A

    公开(公告)日:2022-01-18

    申请号:CN202111230819.3

    申请日:2021-10-22

    Abstract: 本发明提供了一种网站访问量预测方法及系统。该方法结合了LSTM模型(长短期记忆神经网络)和prophet模型(可分解时间序列模型)。所述方法包括:数据预处理,建立训练集;创建深度学习网络,采用LSTM模型建立循环神经网络并训练;把训练好的模型保存并在验证集上验证实验结果;保存结果一并计算误差;创建prophet模型,并训练;把训练好的模型保存并在验证集上验证实验结果;保存结果二并计算误差;创建二元一次方程对结果一和结果二进行线性回归得到权重和偏置参数;代入参数进行最终与预测并计算误差。本发明应用于网站平台的用户访问量预测领域,提高了预测准确度,满足了网站的流量风险评估和流量控制的实际需求。

    基于LSTM-Transformer的日志异常检测方法及系统

    公开(公告)号:CN115344414A

    公开(公告)日:2022-11-15

    申请号:CN202210974407.9

    申请日:2022-08-15

    Abstract: 本发明提供了一种日志异常检测方法及系统,应用于系统的日志异常检测领域。该系统使用Drain、Word2Vec、TF‑IDF算法以及LSTM和Transformer模型。所述系统包括:首先使用Drain对日志进行解析;然后使用Word2Vec生成词向量,并使用TF‑IDF生成加权日志序列特征向量和组件值特征向量;最后,使用一个添加了LSTM的Transformer作为最终的分类模型。本发明不仅能捕获日志中的语义信息和顺序关系,而且还能考虑组件值的信息,进而能够发现多种类型的系统异常,减少系统崩溃次数。本发明以较低的计算成本来解决日志异常检测的不稳定性问题,提高异常检测的准确性和效率,提高应对异常的能力,保证系统运行的安全。

    基于集成学习的系统日志异常检测方法

    公开(公告)号:CN114697108A

    公开(公告)日:2022-07-01

    申请号:CN202210318745.7

    申请日:2022-03-29

    Abstract: 本发明提供了一种系统日志异常检测方法,应用于系统的日志异常检测领域。该方法结合了Drain算法、TF‑IDF算法以及多种异常检测模型,最终使用投票融合。所述方法包括:获取原始日志数据;提取变量,保存常量为模板,将日志解析为结构化文本;特征提取,将字符串转化为可量化的数字;将经过处理后的日志数据输入日志检测模型组,得到预测结果;对日志检测模型输出的检测结果进行投票融合,并输出日志异常检测结果。本发明通过对多个检测结果进行投票融合,能够及时发现系统日志中记录的异常模式,以便对系统的异常进行部署,提高预测结果的准确性,帮助人工完成快速的异常筛查,满足对系统日志异常检测的需求,降低系统运行的成本。

    基于改进YOLOV5X的玻璃容器瑕疵检测方法及系统

    公开(公告)号:CN113962980A

    公开(公告)日:2022-01-21

    申请号:CN202111281750.7

    申请日:2021-11-01

    Abstract: 本发明采用基于改进YOLOV5X的玻璃容器瑕疵识别方法及系统来识别玻璃容器瑕疵,涉及基于深度学习目标检测的玻璃容器瑕疵识别方法及系统。主要包括以下内容:利用玻璃容器瑕疵数据集进行分析标注,生成图片标签XML数据集,对XML文件标注数据集转换生成TXT文件标签集,搭建CSPDarknet53—MHSA主干特征提取网络模块,搭建Bi‑FPN加强特征提取网络模块,搭建检测头模块,通过反向传播CIOU损失函数计算损失以及更新整个系统模型、对构建好的系统模型进行测试。本发明具有鲁棒性高,泛化能力强,准确度高的特点。

    基于改进YOLOv4的容器瑕疵检测方法及系统

    公开(公告)号:CN113887668A

    公开(公告)日:2022-01-04

    申请号:CN202111281298.4

    申请日:2021-11-01

    Abstract: 本发明涉及了基于改进YOLOv4的容器瑕疵检测方法及系统,在实际工业生产线中,触发器控制CCD相机,搭配条形光等光源,拍取玻璃容器瓶身图像,然后使用检测一体机系统中的算法,对瓶身瑕疵进行检测及分类,将检测出瑕疵的玻璃容器击打回收。在这个过程中,检测算法的设计是关键一环,检测算法的好坏,直接影响了质检一体机的优劣之分。本发明提供的基于改进YOLOv4的容器瑕疵检测方法及系统,用以提高玻璃容器瑕疵的检测识别和回收效率,适合应用于机器视觉玻璃容器检测领域及行业。

Patent Agency Ranking