-
公开(公告)号:CN112435151B
公开(公告)日:2023-05-12
申请号:CN202011356149.5
申请日:2020-11-27
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学
IPC: G06Q10/0639 , G06F21/62 , H04L9/40 , G06Q50/26 , G06F21/60 , G06F16/215
Abstract: 本公开提出了一种基于关联分析的政务信息数据处理方法及系统,包括:通过局域网子网发送指令信息,调用政务数据服务器中的指令数据;判断指令数据是否为所调用的指令信息并进行权限判断,对于符合权限要求的允许进行数据读取操作;对获取的数据进行清洗及预处理,将政务公开关键指标数据进行划分,划分结果存储在第一数据列表中;将政务公开关键指标中与经济社会发展相关指标进行处理并进行主成分分析,再将数据进行指标划分,获得第二数据列表;调用第一数据列表及第二数据列表并进行数据关联分析,获得数据间的关联结果。本公开技术方案将不同的政务指标数据进行了关联处理,获得数据之间的关联性。
-
公开(公告)号:CN114706559A
公开(公告)日:2022-07-05
申请号:CN202210319424.9
申请日:2022-03-29
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学
Abstract: 本发明公开了一种基于需求识别的软件规模度量方法。该方法以软件的需求规范文档为基础,获取软件需求并进行需求分类,通过对功能需求中的功能点识别统计得到软件规模。包括:获取目标软件的需求规范文档;对目标软件需求文档进行数据预处理,得到需求语句数据;使用图注意力网络和BERT构建自动需求分类模型进行需求识别分类;对功能需求则进行功能点规模计算,对非功能需求进行属性嵌入和全局统计;最后以功能点规模估算为主,全局非功能需求分类统计和系统特性作为调整系数完成软件规模度量。
-
公开(公告)号:CN112817561A
公开(公告)日:2021-05-18
申请号:CN202110142430.7
申请日:2021-02-02
Applicant: 山东省计算中心(国家超级计算济南中心)
IPC: G06F8/10 , G06F40/211 , G06F40/30 , G06F40/289 , G06F40/253 , G06K9/62 , G06N3/04 , G06N3/08
Abstract: 本发明公开了软件需求文档的事务类功能点结构化抽取方法及系统,包括:获取目标软件需求文档;对目标软件需求文档进行预处理,得到需求语句数据;将需求语句数据,输入到预先训练过的功能点触发词识别模型中,输出识别的功能点触发词及类别;将需求语句数据和所得到的功能点触发词,输入到预先训练过的功能点论元识别模型中,输出功能点论元及其类别;将所得到的功能点触发词和功能点论元组合,得到功能点短语;将功能点短语输入到预先训练过的语言模型中,得到各功能点短语的输出概率值,从而根据输出概率值筛选出目标软件需求文档的功能点短语。
-
公开(公告)号:CN112817561B
公开(公告)日:2023-08-18
申请号:CN202110142430.7
申请日:2021-02-02
Applicant: 山东省计算中心(国家超级计算济南中心)
IPC: G06F8/10 , G06F40/211 , G06F40/30 , G06F40/289 , G06F40/253 , G06F16/35 , G06N3/0442 , G06N3/047 , G06N3/048 , G06N3/0455 , G06N3/08
Abstract: 本发明公开了软件需求文档的事务类功能点结构化抽取方法及系统,包括:获取目标软件需求文档;对目标软件需求文档进行预处理,得到需求语句数据;将需求语句数据,输入到预先训练过的功能点触发词识别模型中,输出识别的功能点触发词及类别;将需求语句数据和所得到的功能点触发词,输入到预先训练过的功能点论元识别模型中,输出功能点论元及其类别;将所得到的功能点触发词和功能点论元组合,得到功能点短语;将功能点短语输入到预先训练过的语言模型中,得到各功能点短语的输出概率值,从而根据输出概率值筛选出目标软件需求文档的功能点短语。
-
公开(公告)号:CN115392214A
公开(公告)日:2022-11-25
申请号:CN202211035627.1
申请日:2022-08-26
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学
IPC: G06F40/205 , G06F40/268 , G06F40/295 , G06K9/62 , G06N3/04 , G06N3/08
Abstract: 本发明公开了一种基于文本生成的数据增强方法、系统及存储介质,该方法以原始文本数据集为基础,通过自然语言处理技术实现文本生成,得到增强数据集。包括:获取某文本数据集,将文本合集中的文本内容作为文本数据增强的原始数据上传至临时存储区中;获取临时存储区中的文本内容,进行原始文本数据进行数据预处理和分句、分词和词性标注;对分词后的原始语句进行关键词抽取、命名实体识别,根据分词识别结果完成原始语句的分词状态标注;将带有分词状态标注的原始分词语句输入到文本生成模型生成目标增强语句;将原始语句集和目标增强语句集进行汇总,得到增强数据集。本发明有效地缓解了自然语言处理任务中数据量少、有效数据稀疏性等问题。
-
公开(公告)号:CN112435151A
公开(公告)日:2021-03-02
申请号:CN202011356149.5
申请日:2020-11-27
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学
Abstract: 本公开提出了一种基于关联分析的政务信息数据处理方法及系统,包括:通过局域网子网发送指令信息,调用政务数据服务器中的指令数据;判断指令数据是否为所调用的指令信息并进行权限判断,对于符合权限要求的允许进行数据读取操作;对获取的数据进行清洗及预处理,将政务公开关键指标数据进行划分,划分结果存储在第一数据列表中;将政务公开关键指标中与经济社会发展相关指标进行处理并进行主成分分析,再将数据进行指标划分,获得第二数据列表;调用第一数据列表及第二数据列表并进行数据关联分析,获得数据间的关联结果。本公开技术方案将不同的政务指标数据进行了关联处理,获得数据之间的关联性。
-
-
-
-
-