-
公开(公告)号:CN102087260B
公开(公告)日:2014-10-08
申请号:CN201010556857.3
申请日:2010-11-24
Applicant: 山东省科学院海洋仪器仪表研究所
IPC: G01N33/18
Abstract: 本发明涉及一种水质参数复合传感器集成装置,包括有集成容器和不少于两个的水质传感器,其特征在于,水质传感器安装在集成容器内,且集成容器上还包括有进水管和出水管。另外,上述的集成容器上还设有三个进液管,以及检测水位的液位电极。本发明将水下传感器集成在一个不锈钢容器中,仅在测量水质数据的时候才将传感器浸泡在海水中,避免了水质传感器暴露在外部环境中,从而能够有效的保护传感器,有效提高了传感器的安全性,延长了传感器的使用时间。并且采用这种设计,对于在海上拆卸,安装都十分方便,人员的安全性也得到了相应的保障。
-
公开(公告)号:CN103489034A
公开(公告)日:2014-01-01
申请号:CN201310477056.1
申请日:2013-10-12
Applicant: 山东省科学院海洋仪器仪表研究所
IPC: G06N3/08
Abstract: 本发明公开了一种预测与诊断在线海流监测数据的方法和装置。其中,该方法包括:对预设样本数量的海流监测数据样本进行基于LMS迭代训练;根据LMS迭代训练的结果确定初始神经网络模型;使用初始神经网络模型对测试数据进行动态预测计算,其中,该测试数据中的样本数至少为预设样本数量的2倍;根据测试数据动态预测计算的结果确定动态学习权值;根据动态学习权值调整海流监测数据样本的样本数量;从海流监测数据样本中选取样本数量调整后的样本作为新样本;对新样本进行LMS迭代训练,得到更新的神经网络模型;使用更新的神经网络模型对后续海流监测数据进行预测与诊断。本发明提升了海流监测数据预测和诊断的有效性。
-
公开(公告)号:CN102062772A
公开(公告)日:2011-05-18
申请号:CN201010556859.2
申请日:2010-11-24
Applicant: 山东省科学院海洋仪器仪表研究所
IPC: G01N33/18
Abstract: 本发明涉及一种大型浮标水质传感器防附着装置,包含有采集控制器,该采集控制器通过电缆连接出水蠕动泵、进水蠕动泵和电磁阀,其特征在于,还包含有装有水质传感器的集成容器,以及通过对应的电磁阀连接到集成容器上的消毒液容器、纯净水容器和保存液容器。本发明的整个装置结构简单,所有的水质传感器均不需要暴露在恶劣的海洋环境中,提高了传感器的安全性;配置的消毒装置可以彻底的清洗集成容器及水质传感器。显然,本发明能有效解决的大型浮标水质传感器海洋生物的附着污染问题,能够延长水质传感器的使用寿命,提高系统长时间测量的准确度和可靠性。
-
公开(公告)号:CN111114696B
公开(公告)日:2024-09-24
申请号:CN202010073294.6
申请日:2020-01-22
Applicant: 山东省科学院海洋仪器仪表研究所
Abstract: 本发明公开了一种并联式海底声学释放机构,包括并排固定的两个释放器基座,两个释放器基座一端固定于连接板上,另一端通过释放钩和弓形卸扣一可拆卸连接,两个弓形卸扣一之间通过一根锚链连接,且锚链穿过连接环;每个释放器基座上均安装有声学释放器,声学释放器的释放单元与释放钩可拆卸连接;释放钩与释放器基座之间通过螺栓连接,且释放钩以该螺栓为转动轴可自由转动,释放钩的一端设置倒钩与弓形卸扣一连接,释放钩的另一端开设连接孔,与声学释放器的释放单元通过连接扣和连接轴连接。本发明所公开的释放机构基于杠杆原理,增大了释放单元的拉力,同时性能可靠,连接强度高、使用寿命长,可保证水下设备顺利回收。
-
公开(公告)号:CN109812730B
公开(公告)日:2024-05-21
申请号:CN201910083721.6
申请日:2019-01-29
Applicant: 山东省科学院海洋仪器仪表研究所 , 东北大学
Abstract: 本发明公开了一种单点连续扫描的低功耗宽光谱LED光源及发光方法,该光源包括外壳,所述外壳内设有LED驱动及控制电路板,所述LED驱动及控制电路板通过电刷与LED灯盘连接,所述LED灯盘上沿圆周方向分布有多个波长范围不同的LED灯,所述LED驱动及控制电路板通过电动机驱动板与电动机连接,所述电动机通过马耳他十字机芯与主动轮一连接,所述主动轮一与从动轮一齿轮啮合,所述LED灯盘固定于从动轮一上;所述外壳上与LED灯盘对应的一侧开设通光孔,另一侧设置外部接口,LED驱动及控制电路板通过外部接口与上位机连接,本发明所公开的LED光源功耗低、光谱宽、单位波长功率大,提升了海水吸光度传感器性能,在浮标等能源供应受限的海洋监测平台上应用潜力巨大。
-
公开(公告)号:CN111983563B
公开(公告)日:2023-02-21
申请号:CN202010891248.7
申请日:2020-08-30
Applicant: 山东省科学院海洋仪器仪表研究所
Abstract: 基于分布式光纤声波传感的远距离超前反潜预警阵列及系统,包括锚、潜标、缆绳组成的固定单元;传感光缆沿诸固定单元不断纵横延伸,进而在近海底层组成一个二维的探测阵列平面,实现传感光缆在xz平面内呈近似方波信号的二维排布,还包括海底工作站、浮标及信号传输缆;传感光缆反射光信号经解调后获得探测目标的方位、运动速度及方向信息,发送到浮标,再经由卫星发送回地面岸站。本发明将分布式光纤声波传感技术与反潜探测需求相结合,提出沿领海边境线铺设全光纤长距离分布式水声侦测实时预警系统,能对入侵我国海洋边界的潜艇实现提前预警,能够实时并精确的定位潜艇位置,降低反潜探测成本,提高反潜作业效率,保卫我国海洋权益。
-
公开(公告)号:CN111874194B
公开(公告)日:2022-08-09
申请号:CN202010648145.8
申请日:2020-07-08
Applicant: 山东省科学院海洋仪器仪表研究所
Abstract: AUV水下停靠坞和基于浮标与AUV的海洋环境观测平台,所述停靠坞包括一个柱形框架,框架一端封堵,框架上设有止动装置和一对夹紧装置,中部上方设有坞站基座,封堵端中心设有行程开关;止动装置包括止动电机、凸轮,内含弹簧和止动柱的套筒。与停靠坞配套的AUV,侧面设有一段弧形凹槽,其中有径向凹槽。带有AUV水下停靠坞的浮标是在浮标体底部安装停靠坞。基于大型锚定浮标与AUV的海洋环境观测平台则包括浮标体、停靠坞和AUV。利用本发明不仅极大拓展了深远海浮标观测能力,克服了AUV能源补给、数据通信等难题,而且依靠安全可靠的大型浮标使得AUV可以躲避恶劣海洋天气可能造成的损害,可实现长期动静结合的海洋环境观测。
-
公开(公告)号:CN113176621A
公开(公告)日:2021-07-27
申请号:CN202110402472.X
申请日:2021-04-14
Applicant: 山东省科学院海洋仪器仪表研究所
Abstract: 本发明涉及检测装置技术领域,具体为一种海洋上层水汽浓度检测装置,包括浮标台,浮标台的外壁开设有多个以环形阵列排布的柱形安装槽,柱形安装槽内设有弹簧,弹簧的外端连接有弧形防撞板,浮标台顶部的中部竖直设有固定柱,固定柱的顶端设有第一支撑板,第一支撑板的顶部设有自适应水平机构,自适应水平机构的顶部设有激光水汽浓度仪;还包括太阳能板,太阳能板背面的中部设有连接杆。该海洋上层水汽浓度检测装置,弹簧和弧形防撞板可以防止漂浮物直接撞击到浮标台,并且弹簧可以对撞击力进行缓冲,对该检测装置起到有效的保护作用,通过自适应水平机构使激光水汽浓度仪保持竖立状态,从而提高检测的准确性。
-
公开(公告)号:CN113008814A
公开(公告)日:2021-06-22
申请号:CN202110198847.5
申请日:2021-02-22
Applicant: 山东省科学院海洋仪器仪表研究所
IPC: G01N21/31 , G01N21/3504 , G01N21/3554 , G01N21/359
Abstract: 本发明公开了一种利用双激光器进行水汽浓度检测的装置及方法,该装置包括装置壳体,装置壳体内设置硬件电路板,装置壳体上下两端侧面分别连接发射端壳体和接收端壳体,发射端壳体内设置第一激光器、第二激光器、第一透镜和第二透镜,发射端壳体表面设置第一反射镜,第一反射镜上开设第一透光孔和第二透光孔;接收端壳体内设置第一光电探测器和第二光电探测器,接收端壳体表面设置第二反射镜,第二反射镜上开设第三透光孔和第四透光孔,第一激光器为近红外波段激光器,第二激光器为中红外波段激光器。本发明所公开的装置及方法可以实现低温区间和高温区间水汽浓度检测量程和检测分辨率的兼顾,可以提高设备的全量程适用性。
-
公开(公告)号:CN112729280A
公开(公告)日:2021-04-30
申请号:CN202011451203.4
申请日:2020-12-10
Applicant: 山东省科学院海洋仪器仪表研究所
Abstract: 本发明属于捷联惯性导航技术领域,具体涉及一种微惯性姿态测量装置及方法。一种基于多面体式阵列结构的微惯性姿态测量装置,包括微测量单元,所述微测量单元至少包括三个三轴加速度计;所述三个三轴加速度计分别呈20~70°空间夹角布置,并且相互之间的夹角角度相等。本发明设计的微惯性姿态测量装置,结构原理是将三个三轴加速度计分别按照倾斜20~70°的空间夹角布置,这样针对空间内的随机运动,在三维空间里保证至少会有一个面上的三轴加速度计不会因为运动轴上的加速度相对于其他轴权重过小,而导致难以辨识载体运动中的小幅渐变加速度,进而引起姿态计算误差过大的现象,这样同时也能够及时的捕捉到重力加速度所测定的水平面。
-
-
-
-
-
-
-
-
-