-
公开(公告)号:CN117272021A
公开(公告)日:2023-12-22
申请号:CN202311211477.X
申请日:2023-09-19
Applicant: 安徽大学
IPC: G06F18/213 , G06F18/2451 , G01N25/72
Abstract: 本发明涉及一种基于水果表面不同组织热特性的水果损伤检测方法,与现有技术相比解决了难以针对水果进行损坏检测的缺陷。本发明包括以下步骤:温度数据的采集;温度数据特征值的提取;特征值的计算;分类器的训练;获取待检测水果的温度数据;水果损伤检测结果的获得。本发明通过热电堆传感器采集水果样品不同感兴趣区域的温度数据;对温度数据进行压缩和傅里叶变换分析,提取曲线峰值作为特征值;将特征值输入最小二乘法线性分类器进行分类训练,从而实现对待测水果损伤的检测。
-
公开(公告)号:CN117115660A
公开(公告)日:2023-11-24
申请号:CN202311239981.0
申请日:2023-09-25
Applicant: 安徽大学
IPC: G06V20/10 , G06V20/68 , G06V10/22 , G06V10/764 , G06V10/774 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: 本发明涉及一种结合检测网络和点回归的葡萄图像采摘点位置单阶段定位方法,与现有技术相比解决了难以定位出葡萄图像中茎位置的缺陷。本发明包括以下步骤:葡萄图像的获取及预处理;葡萄采摘点定位模型的构建;葡萄采摘点定位模型的训练;待定位葡萄图像的获取;葡萄图像采摘点位置的定位。本发明使用了具有点回归的检测网络来检测葡萄茎并同时确定采摘点,获得了良好而准确的采摘点定位,其简单性、可部署性和可操作性远远优于两阶段方法,为葡萄果实采摘提供了实用可靠的技术支撑。
-
公开(公告)号:CN114596274A
公开(公告)日:2022-06-07
申请号:CN202210204848.0
申请日:2022-03-03
Applicant: 安徽大学
Abstract: 本发明公开了一种基于改进Cascade RCNN网络的自然背景柑橘黄龙病检测方法,包括:利用Cascade RCNN网络改进后的骨干网络对待检测柑橘图像进行特征提取,改进后的骨干网络中至少一层采用可变形卷积;利用Cascade RCNN网络改进后的区域特征提取网络对骨干网络输出的特征进行高层次语义特征提取,改进后的区域特征提取网络包括一个自下而上卷积融合过程;利用Cascade RCNN网络的级联检测器对区域特征提取网络输出的高层次语义特征进行多阶段级联的目标识别检测过程,获取待检测柑橘图像的黄龙病检测结果。本发明有效提高了对柑橘黄龙病检测的准确性。
-
公开(公告)号:CN117576467A
公开(公告)日:2024-02-20
申请号:CN202311560242.1
申请日:2023-11-22
Applicant: 安徽大学
IPC: G06V10/764 , G06V10/20 , G06V10/82 , G06V10/44 , G06V10/56 , G06V10/77 , G06N3/0464 , G06N3/047 , G06N3/0455 , G06V10/80 , G06N3/08 , G06N3/045
Abstract: 本发明涉及一种融合频率域和空间域信息的农作物病害图像识别方法,与现有技术相比解决了难以在复杂环境下实现农作物病害检测的缺陷。本发明包括以下步骤:农作物病害图像的获取及预处理;双分支病害图像识别模型的构建;双分支病害图像识别模型的训练;待识别农作物病害图像的获取;农作物病害图像识别结果的获得。本发明结合图像频率域信息与空间域信息提出了双分支的深度神经网络用于农作物病害识别,频率分支接受频域信息作为输入用于提取丰富的农作物病害频率分量特征,可变形注意力Transformer分支擅长于表征全局特征并且有选择的关注农作物病害局部区域特征,融合方法MSAF更好的融合农作物病害频率特征和空间特征。
-
公开(公告)号:CN117876843B
公开(公告)日:2024-07-05
申请号:CN202410042888.9
申请日:2024-01-11
Applicant: 安徽大学
IPC: G06V10/82 , G06V10/80 , G06V10/764 , G06V10/774 , G06V20/10 , G06N3/0464 , G06N3/084
Abstract: 本发明涉及一种具有动态降低图像冗余的高效农作物病害识别方法,与现有技术相比解决了复杂环境下病害识别性能差的缺陷。本发明包括以下步骤:图像数据集的获得及预处理;CA2PNet模型的构建;CA2PNet模型的训练;待识别农作物病害图像的获取;农作物病害图像识别结果的获得。本发明首先通过轻量级CA‑AnchorNet得到具有表征农作物病害区域的特征图,然后通过类激活图(CAM)定位到能反映出类别判别性的病害特征区域并映射到更高分辨率的图像中裁剪出区域块,最后将这些具有更小空间冗余的局部语义块输入轻量级PatchNet进行精准的识别。
-
公开(公告)号:CN117286014A
公开(公告)日:2023-12-26
申请号:CN202311254140.7
申请日:2023-09-26
Applicant: 安徽大学
Abstract: 本发明涉及农业病菌孢子检测技术领域,具体是涉及一种能够捕捉气传真菌病害孢子的自动化装置,包括壳体、竖直设置于壳体内的孢子捕捉装置,孢子捕捉装置靠近壳体顶部设置;所述孢子捕捉装置还设有顶部捕捉仓和侧壁捕捉仓,顶部捕捉仓呈竖直状态设置于孢子捕捉装置顶部且穿过壳体置于防尘罩内;侧壁捕捉仓呈竖直状态固定设置于壳体边角处且一一对应壳体边角设置有多组;孢子检测装置呈竖直状态固定设置于壳体内且靠近壳体底部设置;所述壳体的外壁还折叠设置有用以为设置供电的太阳能供电模块;本发明不仅可以实现自动对孢子进行捕捉而且可以自动对其进行检测,可以实时对孢子进行检测,精确地预测孢子的传播以及病害情况。
-
-
-
-
-