-
公开(公告)号:CN114240846A
公开(公告)日:2022-03-25
申请号:CN202111394790.2
申请日:2021-11-23
Applicant: 复旦大学附属华山医院
Abstract: 本发明提供了一种降低医学图像病灶分割结果假阳率的系统及方法,包括:模块M1:获取医学图像;模块M2:利用分割技术对获取的医学图像进行组织分割和病灶分割,分别得到第一组织区域和第一病灶区域;模块M3:对第一组织区域进行膨胀操作,得到第二组织区域;模块M4:对第一病灶区域与第二组织区域进行假阳性降低处理,得到第二病灶区域,第二病灶区域为降低假阳率病灶检测分割结果。通过医学图像分割的解剖组织结构和病灶的空间膨胀和卷积方法,解决了病灶分割结果假阳率高的问题,取得了提高病灶诊断正确性与分割精准度的效果。
-
公开(公告)号:CN111415324A
公开(公告)日:2020-07-14
申请号:CN201910737818.4
申请日:2019-08-09
Applicant: 复旦大学附属华山医院
Abstract: 本发明属图像处理及应用技术领域,具体涉及一种基于磁共振成像的脑病灶图像空间分布特征的分类鉴别方法。本发明方法主要包括病灶分割、个体图像配准、空间标准化、标准空间模板个体化、病灶空间分布特征提取、特征筛选及建模等步骤,核心是通过在个体空间和标准空间的病灶的多种特征分析,构建一套脑病灶图像空间分布特征集的分析方法、并在此基础上使用机器学习进行特征筛选和建模。本方法可用于使用脑磁共振影像进行不同抗体、不同基因等原因导致的不同脑疾病或脑状态的脑病灶图像分类鉴别,为临床及科研提供有效的指导。
-
公开(公告)号:CN114187239B
公开(公告)日:2024-08-20
申请号:CN202111397102.8
申请日:2021-11-23
Applicant: 复旦大学附属华山医院
Abstract: 本发明提供了一种结合影像组学和空间分布特征的医学图像分析方法及系统,包括:步骤S1:获取医学图像数据并进行预处理,得到预处理后的医学图像数据;步骤S2:对预处理后的医学图像数据进行目标区域提取,得到目标区域图像;步骤S3:对目标区域图像进行第一图像处理,得到目标区域图的影像组学标签;步骤S4:对目标区域图像进行第二图像处理,得到目标区域图的空间分布标签;步骤S5:利用目标区域的影像组学标签和空间分布标签对机器学习预测模型进行训练,得到训练后的机器学习预测模型;步骤S6:利用训练后的机器学习预测模型得到目标区域的疾病分类信息。
-
公开(公告)号:CN111415324B
公开(公告)日:2024-03-08
申请号:CN201910737818.4
申请日:2019-08-09
Applicant: 复旦大学附属华山医院
IPC: G06V10/764 , G06T7/136 , G06T7/00
-
公开(公告)号:CN116452860A
公开(公告)日:2023-07-18
申请号:CN202310317407.6
申请日:2023-03-28
Applicant: 复旦大学附属华山医院
Abstract: 本发明提供了一种基于深度学习和影像组学的分层分类方法及系统,所述方法包括如下步骤:步骤S1:数据收集及目标结构检测,生成目标结构区域的检测框;步骤S2:从目标结构区域检测框内提取组学特征集F1,完成类别A与类别B的分类;步骤S3:基于深度卷积神经网络的目标结构对类别A进行自动分割;步骤S4:基于影像组学完成类别A的亚分类。本发明通过深度学习和机器学习的方法,构建了一套基于特定结构及其周围区域影像特征进行两个层级的自动分类的算法和系统,为与特定结构相关疾病的诊断流程提供了新思路。
-
公开(公告)号:CN116433620A
公开(公告)日:2023-07-14
申请号:CN202310323524.3
申请日:2023-03-29
Applicant: 复旦大学附属华山医院
Abstract: 本发明提供了一种基于CT图像的骨密度预测及骨质疏松智能筛查方法和系统,包括:进行腰椎CT切片选择,得到目标切片;基于深度卷积神经网络框架构建腰椎椎体自动分割模型,模型输入为目标切片,输出为腰椎椎体的二值分割结果图以及对应的腰椎区域图;基于深度卷积神经网络框架构建腰椎骨密度预测模型,模型输入为双通道图像,输出为腰椎的骨密度值,所述双通道图像由目标切片和腰椎区域图处理后构建;根据骨密度值进行骨质疏松症智能筛查;根据筛查结果以及健康人群骨密度值的统计数据,形成骨质疏松症智能筛查报告。本发明能够有效地完成骨密度的预测和OP的早期筛查,预防骨质疏松性骨折的发生,实现更快捷方便的骨质疏松症筛查。
-
公开(公告)号:CN113223699B
公开(公告)日:2024-10-18
申请号:CN202110355578.9
申请日:2021-04-01
Applicant: 复旦大学附属华山医院
IPC: G16H50/70 , G16H50/20 , G16H30/40 , G06V10/764 , G06V10/77 , G06V10/82 , G06V10/26 , G06N3/045 , G06N3/0499 , G06T7/00 , G06T7/73 , A61B34/10
Abstract: 本发明提供了一种构建腰椎骨量减少和骨质疏松筛查模型的方法和系统,包括:步骤1:从双平面成像设备中采集影像数据,获取冠、矢状面影像数据及体检信息并进行预处理;步骤2:对冠、矢状面影像进行椎体分割,得到分割结果;步骤3:根据分割结果和体检信息,构成特征集合;步骤4:基于特征集合进行腰椎骨量减少和骨质疏松筛查模型构建。本发明利用常规体检指标及冠、矢状面影像信息,进行腰椎骨量减少和骨质疏松疾病的筛查,在降低辐射量的同时,为今后快速准确地筛查具有高OP疾病风险的人群提供了理论和实践依据,具有很大的实际应用价值。
-
公开(公告)号:CN116452859A
公开(公告)日:2023-07-18
申请号:CN202310316672.2
申请日:2023-03-28
Applicant: 复旦大学附属华山医院
IPC: G06V10/764 , G06V10/20 , G06V10/40 , G06V10/25 , G06V10/771 , G06T7/00 , G16H50/20
Abstract: 本发明提供了一种基于多模态磁共振成像的帕金森病数据分类方法及系统,包括:获取脑结构磁共振图像、脑扩散加权图像和脑磁敏感加权图像;对脑多模态磁共振影像进行预处理,得到预处理后的脑结构图像、脑扩散图像和脑磁敏感图像;提取脑结构特征,得到结构特征集合;提取脑扩散特征,得到脑扩散特征集合;提取脑磁敏感特征;得到脑磁敏感特征集合;采用一对一策略的多分类模型,进行特征筛选,得到分类结果。本发明提出的PD、非典型性帕金森病和健康对照分类的数据处理分类,对全脑ROI提取多模态特征,并用特征筛选方法确定了对分类有价值的区域和特征,有助于基于影像的PD临床诊断和机制研究,能满足PD智能辅助诊断的需要。
-
公开(公告)号:CN111681184B
公开(公告)日:2023-02-24
申请号:CN202010523058.X
申请日:2020-06-09
Applicant: 复旦大学附属华山医院
Abstract: 本申请实施例提出了一种神经黑色素图像重建方法、装置、电子设备和计算机存储介质,所述神经黑色素图像重建方法包括:获取QSM序列的N组幅值图像;定所述N组幅值图像中的前M组幅值图像;将所述前M组幅值图像中的每一组幅值图像确定为短回波时间的幅值图像;基于所述M组短回波时间的幅值图像进行图像重建,得到所述N组幅值图像对应的神经黑色素图像。由于该神经黑色素图像的重建方法是通过QSM序列所获得的短回波时间的幅值图像所重建的,可以避免在后续的图像处理流程中进行图像的配准,同时,可以实现通过同一次扫描获取包含NM‑MRI序列和QSM两个序列的信息,有利于实际临床检查。
-
公开(公告)号:CN111667478A
公开(公告)日:2020-09-15
申请号:CN202010523637.4
申请日:2020-06-10
Applicant: 复旦大学附属华山医院
Abstract: 本发明提供了一种基于CTA到MRA跨模态预测的颈动脉斑块识别方法,包括以下步骤:数据收集步骤:收集配对的颈动脉CTA和MRA图像数据;斑块分割及模型训练步骤:先进行CTA和MRA颈动脉管腔的定位,然后进行颈动脉斑块的分割,获得CTA和MRA的斑块区域图像,将CTA和MRA的斑块区域图像送到pix2pix或者cycle-GAN网络进行训练,获得初步训练后的模型。本发明设计完整、新颖的算法流程,使用改进的深度学习Multiplan-net算法对CTA图像上的颈动脉管腔、斑块进行自动分割,在此基础上设计优化的对抗生成网络进行CTA数据扩增,从而进一步提高分割精度。
-
-
-
-
-
-
-
-
-