-
公开(公告)号:CN115394972A
公开(公告)日:2022-11-25
申请号:CN202210850456.1
申请日:2022-07-19
Applicant: 复旦大学
Abstract: 本发明涉及一种三明治结构的介孔碳‑硅复合负极材料及其合成方法与应用,具体方法为:(1)将石墨、硅纳米颗粒、分散剂和粘结剂在水溶液中分散均匀;(2)将混合溶液进行喷雾干燥得到石墨‑硅复合材料;(3)将石墨‑硅复合材料、催化剂、碳前驱体和模板剂分散在水‑有机溶剂混合溶液中反应得到石墨@硅@介孔高分子材料;(4)高温焙烧脱除模板剂得到所述介孔碳‑硅复合负极材料。该材料具有明确的三层夹心结构,内层为石墨,中间层为硅,外层为介孔碳。与现有技术相比,本发明材料应用于锂离子电池的负极时表现出优异的性能,且原料易得,方法简单,成本低,有望在锂离子电池领域广泛应用。
-
公开(公告)号:CN113617355A
公开(公告)日:2021-11-09
申请号:CN202110870359.4
申请日:2021-07-30
Applicant: 复旦大学
IPC: B01J23/745 , B01J23/44 , B01J35/10 , C07C45/29 , C07C47/232
Abstract: 本发明涉及一种镶嵌纳米颗粒的功能介孔材料及其原位嵌入组装方法和应用,首先将表面活性剂、纳米颗粒和可溶性树脂溶解在有机溶剂中;随着溶剂的挥发,可溶性树脂分别与纳米颗粒和表面活性剂之间发生配位和氢键相互作用并驱动组装,形成有序介观结构;然后在较低温度下,树脂前驱体进一步聚合交联,稳固介观结构;最后在惰性气氛下高温碳化、除去表面活性剂,形成介观骨架。本发明制得的功能介孔材料应用于肉桂醇催化氧化可表现出优异的性能,且提供的方法简便、易重复、普适性强,所得材料在催化领域具有广泛的应用前景。
-
公开(公告)号:CN113629253B
公开(公告)日:2023-07-04
申请号:CN202110870376.8
申请日:2021-07-30
Applicant: 复旦大学
IPC: H01M4/62 , H01M4/38 , H01M10/0525 , B82Y30/00 , B82Y40/00
Abstract: 本发明涉及一种用于锂离子电池负极的多孔硅@碳核壳纳米球及其制备和应用,该纳米球的制备过程具体为:将碱催化剂、碳前驱物和二氧化硅前驱物溶解在有机溶剂/水混合溶液中;碳前驱物和二氧化硅前驱物在碱催化作用下水解聚合,相分离沉淀形成二氧化硅@高分子核壳纳米球;然后高温碳化形成二氧化硅@碳核壳纳米球;进一步通过熔融盐还原,得到多孔硅@碳纳米球。与现有技术相比,本发明的材料应用于锂离子电池的负极时表现出优异的性能,首圈库伦效率高达86%,在电流密度为500mA/g下,循环150次后容量保持在800mAh/g,制备过程中原料易得,方法简单,成本低,有望在锂离子电池领域广泛应用。
-
公开(公告)号:CN114392727A
公开(公告)日:2022-04-26
申请号:CN202111599171.7
申请日:2021-12-24
Applicant: 复旦大学
Abstract: 本发明涉及功能材料制备技术领域,尤其是涉及一种磁性无机纳米颗粒@有序介孔材料核壳复合材料及其制备方法,该制备方法具体为首先将壳层前驱体、表面活性剂和催化剂溶解在有机溶剂中,得到混合液;将混合液干燥,得到单胶束凝胶;将单胶束凝胶和磁性无机纳米颗粒分散在有机醇‑水溶液中加热,未水解完全的壳层前驱体进一步水解交联,诱导单胶束在无机纳米颗粒表面组装;最后高温焙烧去除表面活性剂,得到所述磁性无机纳米颗粒@有序介孔材料核壳复合材料。该复合材料具有高的比表面积和强的磁响应性,在生物分离、吸附方面具有广阔的应用前景。本发明方法简单,原料易得,适于放大生产。
-
公开(公告)号:CN114369846A
公开(公告)日:2022-04-19
申请号:CN202111609462.X
申请日:2021-12-24
Applicant: 复旦大学
IPC: C25B11/091 , C25B11/031 , C25B1/55 , B05D7/24 , B05D1/00
Abstract: 本发明涉及功能材料制备技术领域,尤其是涉及一种氮掺杂介孔金属氧化物薄膜及其制备方法;该制备方法具体为首先将前驱体、表面活性剂、氮源和催化剂溶解在有机溶剂中,得到混合液;将混合液通过旋转涂膜的方式涂在基底上后干燥挥发有机溶剂;最后高温焙烧去除表面活性剂,得到所述氮掺杂介孔金属氧化物薄膜。本发明制得的氮掺杂介孔金属氧化物薄膜厚度为50‑5000nm,介孔孔径为5‑40nm,比表面积为100‑800m2/g。本制备方法普适性强,可以合成一系列氮掺杂金属氧化物薄膜。本发明方法简单,原料易得,适于放大生产。
-
公开(公告)号:CN114204029A
公开(公告)日:2022-03-18
申请号:CN202111429671.6
申请日:2021-11-29
Applicant: 复旦大学
IPC: H01M4/62 , H01M10/0525
Abstract: 本发明涉及一种多级有序大孔/介孔碳‑金属碳化物复合材料及其制备方法和应用,该复合材料具有球形大孔,在球状大孔壁上还有介孔,所述球形大孔的孔径尺寸为50‑3000nm,所述介孔的孔径尺寸为2‑50nm;该方法包括以下步骤:(1)取表面活性剂、碳源、金属源和有机溶剂混合,得到混合液;(2)将所得混合液与光子晶体混合,然后经干燥得到固体A;(3)将所得固体A焙烧,即得目的产物。本发明通过在碳三维骨架中引入金属碳化物,构筑碳基复合材料,提高其对锂的亲和能力,确保锂金属的均匀沉积,有助于构建无枝晶锂金属电池。与现有技术相比,本发明可确保锂金属的均匀沉积,且方法普适性强,适用于制备含不同金属碳化物的碳‑金属碳化物复合材料。
-
公开(公告)号:CN112653537B
公开(公告)日:2022-03-18
申请号:CN202011419544.3
申请日:2020-12-06
Applicant: 复旦大学
Abstract: 本发明属于无线通信中低功耗蓝牙技术领域,具体为一种提高低功耗蓝牙系统中接收机灵敏度的方法。本发明方法是在低功耗蓝牙S=2编码方式下在发送端的前向差错控制编码器和符号模式映射之间引入一个比特交织机,用于对比特流数据进行附加处理;然后,在接收端通过解调与解码的Turbo迭代处理;接收端包含一个Turbo迭代解调和解码器,用于将低功耗蓝牙的GFSK调制器和卷积编码器建模成有限状态机,然后结合比特交织机,利用BCJR算法进行迭代解调和解码;从而显著降低误码率,提升接收机灵敏度。仿真表明,本发明能够在高信噪比时提升约3‑5dB的性能增益。
-
公开(公告)号:CN113629253A
公开(公告)日:2021-11-09
申请号:CN202110870376.8
申请日:2021-07-30
Applicant: 复旦大学
IPC: H01M4/62 , H01M4/38 , H01M10/0525 , B82Y30/00 , B82Y40/00
Abstract: 本发明涉及一种用于锂离子电池负极的多孔硅@碳核壳纳米球及其制备和应用,该纳米球的制备过程具体为:将碱催化剂、碳前驱物和二氧化硅前驱物溶解在有机溶剂/水混合溶液中;碳前驱物和二氧化硅前驱物在碱催化作用下水解聚合,相分离沉淀形成二氧化硅@高分子核壳纳米球;然后高温碳化形成二氧化硅@碳核壳纳米球;进一步通过熔融盐还原,得到多孔硅@碳纳米球。与现有技术相比,本发明的材料应用于锂离子电池的负极时表现出优异的性能,首圈库伦效率高达86%,在电流密度为500mA/g下,循环150次后容量保持在800mAh/g,制备过程中原料易得,方法简单,成本低,有望在锂离子电池领域广泛应用。
-
公开(公告)号:CN113548684A
公开(公告)日:2021-10-26
申请号:CN202110870357.5
申请日:2021-07-30
Applicant: 复旦大学
IPC: C01F7/02 , C01B32/194 , B82Y30/00 , B82Y40/00 , B01J21/18 , B01J21/04 , B01J31/06 , B01J35/08 , B01J35/10 , B01J37/10 , C08L61/06 , C08K7/24
Abstract: 本发明涉及一种介孔氧化铝基核壳复合材料及其单胶束导向界面组装方法和应用,该制备方法具体为:将铝源、表面活性剂、酸溶解在有机溶剂中,得到混合液;将混合液干燥,得到单胶束凝胶;将单胶束凝胶、功能内核与有机醇水溶液混合,进行水热反应,单胶束凝胶在功能内核表面包裹;最后高温焙烧去除表面活性剂,得到所述具有介孔氧化铝壳层的核壳复合材料。本发明制得的核壳复合材料壳层厚度为5‑500nm,介孔孔径为2‑50nm,比表面积为50‑1200m2/g。本制备方法普适性强,适用于一系列尺寸、形状及组成不同的功能内核等。
-
公开(公告)号:CN115784206A
公开(公告)日:2023-03-14
申请号:CN202211697243.6
申请日:2022-12-28
Applicant: 复旦大学
Abstract: 本发明涉及一种介孔多层螺旋状手性氮掺杂碳纳米球及其制备方法及其制备方法与应用,利用盐酸多巴胺为碳源和氮源,两亲性三嵌段共聚物PEO‑PPO‑PEO为模板剂,甲基苯酚有机小分子为结构导向剂,甲基苯有机小分子为扩孔剂,无机碱为催化剂,醇和水的混合溶液为溶剂,首先制备出聚多巴胺纳米球,然后经过焙烧去除材料中的模板剂,同时聚多巴胺纳米球进行碳化,从而得到一种介孔多层螺旋状手性氮掺杂碳纳米球。与现有技术相比,本发明方法简单,湿法制备,原料易得,适于放大生产,在分离、环境、能源、催化等众多领域具有广泛的应用前景。
-
-
-
-
-
-
-
-
-