-
公开(公告)号:CN109920406B
公开(公告)日:2021-12-03
申请号:CN201910245435.5
申请日:2019-03-28
Applicant: 国家计算机网络与信息安全管理中心 , 珠海高凌信息科技股份有限公司
Abstract: 本发明的技术方案包括一种基于可变起始位置的动态语音识别方法及系统,用于实现:实时加载输入的语音流信号,对语音信号进行预处理;对语音信号进行特征提取,获取语音信号中的特征;根据语音信号中的特征调用语音模型信息库的多个模型对语音信号进行逐帧模式匹配。本发明的有益效果为:本发明的有益效果为容易理解,实现简单,当前语音模型匹配选取长度较为合理,经过算法改进后,减少了语音模型匹配次数,语音识别效率比之前的算法提高了30%的效率。
-
公开(公告)号:CN110248322B
公开(公告)日:2021-10-22
申请号:CN201910572375.8
申请日:2019-06-28
Applicant: 国家计算机网络与信息安全管理中心 , 天津市国瑞数码安全系统股份有限公司
IPC: H04W4/14 , H04W12/128
Abstract: 本发明涉及一种基于诈骗短信的诈骗团伙识别方法及识别系统,该识别方法包括:实时识别并提取诈骗短信的敏感信息;对该诈骗短信进行通联关系分析,获取预定时间范围内所有相关通讯数据;从所有相关通讯数据中分别提取与敏感信息有关联的主叫信息和被叫信息,并提取与主叫号码相似度超过阈值的主叫信息;根据所有主叫信息获取诈骗团伙的诈骗地区、诈骗时间、团伙成员、团伙剧本。本发明提取诈骗短信的敏感信息,并获取与诈骗短信同一主叫的有关语音信息进行分析,从而获取以多种方式向被叫信息发送敏感信息的所有主叫信息和主叫语音,对所有主叫信息进行整体分析,以获取诈骗团伙的诈骗地区、诈骗时间、团伙成员等,实现诈骗团伙识别的自动化。
-
公开(公告)号:CN113205801A
公开(公告)日:2021-08-03
申请号:CN202110498059.8
申请日:2021-05-08
Applicant: 国家计算机网络与信息安全管理中心 , 清华大学
Abstract: 本申请涉及一种恶意语音样本的确定方法、装置、计算机设备和存储介质。该方法包括:获取初始语音样本集;根据预设的多种恶意类别对初始语音样本集进行分类,得到多种恶意类别中每种恶意类别对应的语音样本子集;根据每种恶意类别对应的语音样本子集中的语音样本信息,计算每种恶意类别对应的语音样本子集的恶意度;将恶意度满足预设恶意度条件的恶意类别对应的语音样本子集中的语音样本,确定为恶意语音样本。本方法基于语音样本子集的恶意类别以及恶意度可自动确定恶意语音样本,有利于提高恶意语音样本的确定效率。
-
公开(公告)号:CN110175221B
公开(公告)日:2021-04-20
申请号:CN201910411018.3
申请日:2019-05-17
Applicant: 国家计算机网络与信息安全管理中心 , 杭州东信北邮信息技术有限公司 , 长安通信科技有限责任公司
IPC: G06F16/33 , G06F40/289 , G06N3/04
Abstract: 利用词向量结合机器学习的垃圾短信识别方法,所述方法包括下列操作步骤:(1)根据短信特征对垃圾短信进行第一步识别;(2)根据关键词对垃圾短信进行第二步识别;(3)计算短信的短信文本向量,使用支持向量机的方法对垃圾短信进行第三步识别;(4)计算短信的静态词向量矩阵,利用卷积神经网络对垃圾短信进行第四步识别;(5)计算短信的每一个分词的动态词向量,利用卷积神经网络对垃圾短信进行第五步识别。本发明方法采用无监督和有监督相结合的垃圾短信识别方法,能大幅度提高垃圾短信的识别准确率。
-
公开(公告)号:CN112435672A
公开(公告)日:2021-03-02
申请号:CN202011105330.9
申请日:2020-10-15
Applicant: 讯飞智元信息科技有限公司 , 国家计算机网络与信息安全管理中心
Abstract: 本发明公开了一种声纹识别方法、装置、设备及存储介质,该方法包括:获取用户的包含登录指令待识别的音频数据,输入声纹提取模型,输出声学特征;将所述声学特征输入已训练的声纹识别模型,输出识别文本;根据预先存储的验证音频数据对所述识别文本进行识别,以识别用户身份;响应于所述用户身份识别成功,执行所述登录执行。本发明针对如何解决由于传统声纹识别算法的局限性,通过获取用户的包含登录指令待识别的音频数据,输入声纹提取模型,输出声学特征;将所述声学特征输入已训练的声纹识别模型,输出识别文本;根据预先存储的验证音频数据对所述识别文本进行识别,以识别用户身份,提高音频数据进行登录验证的准确率。
-
公开(公告)号:CN110213724B
公开(公告)日:2020-10-20
申请号:CN201910412262.1
申请日:2019-05-17
Applicant: 国家计算机网络与信息安全管理中心 , 杭州东信北邮信息技术有限公司 , 长安通信科技有限责任公司
Abstract: 一种伪基站运动轨迹的识别方法,包括:从数据库中提取一段时长内的所有切换事件信令,计算每个基站在一定时间周期内的切换事件指标,并识别出疑似受伪基站设备影响的异常基站,将异常基站信息保存在异常基站识别记录表中,同时构建伪基站信息表;分别计算异常基站识别记录表中每个异常基站和伪基站信息表中每个基站之间的位置距离和发现时间差,获得异常基站识别记录表中每个异常基站的轨迹编号,然后将获得轨迹编号的异常基站信息写入伪基站信息表;根据伪基站信息表中基站的位置、发现时间和轨迹编号,获得每个伪基站的运动轨迹。本发明属于信息技术领域,能通过识别受伪基站设备影响而导致信令表现异常的基站,实现伪基站运动轨迹的准确跟踪。
-
公开(公告)号:CN111709472A
公开(公告)日:2020-09-25
申请号:CN202010543099.5
申请日:2020-06-15
Applicant: 国家计算机网络与信息安全管理中心 , 杭州东信北邮信息技术有限公司
Abstract: 一种动态融合规则到诈骗行为识别模型的方法,包括:由全量通话记录生成电信通联网络:G={V,E,Y},并据此构建识别诈骗行为的时空图;读取诈骗行为识别规则表中的每条规则,计算每个用户对应于每条规则的转换值;将每个用户对应于规则的转换值构成每个用户的通话特征指标向量,每个用户的通话特征指标向量即是时空图中每个用户的节点特征;构建、并训练诈骗行为识别模型,然后将待识别用户的节点特征输入至诈骗行为识别模型,并根据模型输出判断待识别用户是否是可疑诈骗行为号码。本发明属于信息技术领域,能实现规则和模型的动态融合,从而实时检测、并准确识别各种诈骗行为。
-
公开(公告)号:CN109587350A
公开(公告)日:2019-04-05
申请号:CN201811373658.1
申请日:2018-11-16
Applicant: 国家计算机网络与信息安全管理中心
IPC: H04M3/22 , H04W12/12 , H04W16/22 , G06F16/2458
Abstract: 本发明公开了一种基于滑动时间窗口聚合的电信诈骗电话的序列异常检测方法,属于数据挖掘与机器学习和商务智能领域。首先构造训练用户数据集,回溯被叫用户全部通话记录,形成各被叫用户通话序列。利用cos相似度函数,计算序列结构相似度和统计特征相似度并进行线性组合,得到加和相似度。然后通过K-Means聚类模型得到K类用户,构成独立的序列训练数据集,通过滑动时间窗口,形成K个训练集。最后在每个训练集上训练iForest模型,得到K个异常检测模型。每个被叫用户通过对应的异常检测模型识别异常,当最大值高于阈值h时,该被叫用户是高风险的被叫用户。每过固定时间段更新K-Means模型和异常检测模型。本发明缓解了数据稀疏性问题,发现基于群组的异常特征。
-
公开(公告)号:CN109359126A
公开(公告)日:2019-02-19
申请号:CN201811009136.3
申请日:2018-08-30
Applicant: 国家计算机网络与信息安全管理中心 , 天津市国瑞数码安全系统股份有限公司
IPC: G06F16/242 , G06F16/2453
Abstract: 本发明属于数据查询技术领域,具体而言,涉及一种基于业务用户习惯的智能学习查询模型的构建方法,包括如下步骤:S1、从数据源中获取业务用户的数据查询记录;S2、根据步骤S1中得到的所述数据查询记录,进行数据查询习惯分析;S3、根据步骤S2中得到的数据查询习惯分析结果构建查询模型。本发明还提供了一种基于业务用户习惯的智能学习查询系统。本发明通过对业务用户的数据查询习惯进行分析,针对分析结果制定数据查询方案,构建查询模型,能够提前将业务用户关注的数据推送给业务用户,具有查询时间短、用户体验效果好的特点。
-
公开(公告)号:CN109274836A
公开(公告)日:2019-01-25
申请号:CN201811287123.2
申请日:2018-10-31
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明公开了一种大规模数据流中电信欺诈风险识别方法,属于数据挖掘与机器学习和商务智能等领域。从呼叫记录数据库中筛选高风险被叫用户和主叫用户作为分析对象,构建欺诈被叫索引数据库,提取各个索引对应的显著特征;采用二级级联分类模型,得到每个被叫号码的攻击风险值;保留每个高风险被叫号码最近的滑动窗口异常得分的最大值,作为各自的序列风险值;构造被叫号码与主叫号码的通联关系二部图,计算每个被叫号码的通联风险值;借助逻辑回归模型,对每个被叫号码的攻击风险、序列风险和通联风险进行融合,得出每个被叫号码各自的综合风险值。本发明最终的综合风险值具有较高的稳定性和可解释性,实现较高的分类和检测效率。
-
-
-
-
-
-
-
-
-