用于认证加密与解密数据的方法及相关设备

    公开(公告)号:CN119854038A

    公开(公告)日:2025-04-18

    申请号:CN202510322616.9

    申请日:2025-03-19

    Abstract: 本申请提供一种用于认证加密与解密数据的方法及相关设备。该方法包括:获取原始数据包,所述原始数据包是利用XDP技术在链路层捕获的;对所述原始数据包的有效载荷进行加密,以得到第一数据包;生成消息摘要并对所述消息摘要进行签名,以生成消息认证码;将所述消息认证码和所述第一数据包进行封装,以得到第二数据包;对所述第二数据包的真实性进行验证;响应于所述第二数据包验证通过,将所述第二数据包写入解密线程队列进行解密,以得到所述原始数据包。通过上述方法实现了终端与业务系统之间数据传输的认证加密,使得终端与业务系统之间的数据传输更加安全。

    一种两阶段异常用户行为分析的检测方法及系统

    公开(公告)号:CN117909912B

    公开(公告)日:2024-07-02

    申请号:CN202410312729.6

    申请日:2024-03-19

    Abstract: 本发明涉及计算机与人工智能技术领域,特别涉及一种两阶段异常用户行为分析的检测方法及系统。其方法包括步骤:S1.数据特征处理:在获取用户行为信息及用户身份信息后将数据进行特征处理;S2.建立基准模型:分析用户行为的时间分布情况,选取部分特征数据建立基准模型,利用基准模型进行粗粒度的用户行为检测,找出存在异常用户;S3.细粒度检测:对基准模型找出的存在异常用户进行细粒度的第二阶段检测。本发明在第一阶段的基准模型实现行为级异常的检测,并能按时间顺序依次检测每周用户的行为情况,在第二阶段进行细粒度的用户级异常的检测,找出异常行为与用户的对应关系,更准确、更高比例地找出异常行为和用户并减少误报。

    一种两阶段异常用户行为分析的检测方法及系统

    公开(公告)号:CN117909912A

    公开(公告)日:2024-04-19

    申请号:CN202410312729.6

    申请日:2024-03-19

    Abstract: 本发明涉及计算机与人工智能技术领域,特别涉及一种两阶段异常用户行为分析的检测方法及系统。其方法包括步骤:S1.数据特征处理:在获取用户行为信息及用户身份信息后将数据进行特征处理;S2.建立基准模型:分析用户行为的时间分布情况,选取部分特征数据建立基准模型,利用基准模型进行粗粒度的用户行为检测,找出存在异常用户;S3.细粒度检测:对基准模型找出的存在异常用户进行细粒度的第二阶段检测。本发明在第一阶段的基准模型实现行为级异常的检测,并能按时间顺序依次检测每周用户的行为情况,在第二阶段进行细粒度的用户级异常的检测,找出异常行为与用户的对应关系,更准确、更高比例地找出异常行为和用户并减少误报。

    基于PUF的细粒度多端身份认证方法以及相关设备

    公开(公告)号:CN117040767B

    公开(公告)日:2024-01-23

    申请号:CN202311303994.X

    申请日:2023-10-10

    Abstract: 本申请提供一种基于PUF的细粒度多端身份认证方法以及相关设备。在申请中,网关节点不再向用户发行智能卡,从而避免基于智能卡或者移动设备的离线口令猜测攻击,智能卡丢失攻击的问题。同时,模运算的周期性直接导致攻击者无法有效猜测出用户的口令,保护口令安全。网关节点利用SM4加密算法加密了用户细粒度认证的相关参数,保障用户只能在自己的权限范围内与特定通信实体进行认证,运用物理不可克隆函数(Physically Unclonable function,简称PUF)保护用户的口令安全。进一步地,在用户端向网关节点进行验证,设计了访问时间阈值及控制条件,以限制用户端验证过程的时效,确保在有效授权时间内,进行多端身份认证,有效保障

    一种基于多示例感知的软件漏洞检测方法及相关设备

    公开(公告)号:CN116738443B

    公开(公告)日:2023-12-26

    申请号:CN202311003502.5

    申请日:2023-08-10

    Abstract: 本发明公开了一种基于多示例感知的软件漏洞检测方法及相关设备,所述方法包括:获取包级代码片段,使用预训练模型对所述包级代码片段进行训练,得到表征向量;将表征向量分别映射到不同的线性空间中,得到包级代码片段的注意力表征向量;将第一标志向量与表征向量结合,得到包级代码片段中的每个函数代码片段的第二表征向量,将每个函数代码片段的第二表征向量拼接,再进行卷积和拆分操作,得到函数级第二标志向量和目标表征向量,并通过最大池化层计算得到文件级标志向量,根据函数级第二标志向量和文件级标志向量检测漏洞。本发明捕捉示例本身的局部信息和不同示例之间的全局信息,同时检测判断文件级代码和函数级代码是否包含漏洞。

Patent Agency Ranking