-
公开(公告)号:CN110825496A
公开(公告)日:2020-02-21
申请号:CN201911107516.5
申请日:2019-11-13
Applicant: 电子科技大学广东电子信息工程研究院 , 哈尔滨工业大学
IPC: G06F9/455
Abstract: 本发明属于计算机的技术领域,具体涉及一种基于VMI的内核数据监控方法,包括如下步骤,步骤S0、从虚拟机外部获取和分配虚拟机内存的指定大小和连续空间;步骤S1、搜索整个所述虚拟机内存空间,获取所有目标内核结构的内存地址;步骤S2、将所有目标内核数据拷贝至分配的内存空间,并完成相应的指针修改和原内核数据结构体的释放;步骤S3、对分配内存区域实施内存页级别的内存监控。本发明能够对内存区域实施内存页级别的监控,保护虚拟机文件系统的安全,还能降低了传统方法中非目标内核数据引起的额外性能开销。
-
公开(公告)号:CN118866355A
公开(公告)日:2024-10-29
申请号:CN202410914371.4
申请日:2024-07-09
Applicant: 哈尔滨理工大学 , 哈尔滨工业大学 , 中数(深圳)时代科技有限公司
IPC: G16H50/30 , G16H50/20 , G06N3/0455 , G06F18/2135 , G06F18/24 , G06N3/096 , G06F18/15 , G06F18/23213
Abstract: 本发明一种基于联邦学习的代谢性疾病预测方法及系统,涉及智能医疗技术领域,为解决现有的模型难以全面进行多种代谢疾病的预测,且难以保障模型的运行效率、准确性以及数据的隐私安全。本发明构建多个代谢性疾病数据集,采用主成分分析和聚类对数据进行处理,构建合并数据集;构建有改进的DNN的网络模型,模型引入Transformer层和全连接层,Transformer层通过其注意力机制对数据进行特征提取与转换,并在向量信息中插入位置信息来捕捉主成分特征之间的隐含序列关系,全连接层之间通过残差层连接;基于联邦学习方法各客户端基于合并数据集采用蒸馏的方法对改进的DNN模型进行训练,最终得到全局的代谢性疾病预测模型,以实现对代谢性疾病进行分类。
-
公开(公告)号:CN118335340A
公开(公告)日:2024-07-12
申请号:CN202410589344.4
申请日:2024-05-13
Applicant: 哈尔滨理工大学 , 哈尔滨工业大学 , 中数(深圳)时代科技有限公司
IPC: G16H50/50 , G16H50/70 , G16H10/60 , G06N3/0442 , G06N3/0464 , G06N3/045
Abstract: 本发明提供一种多模态的痛风病多分期预测方法及系统,涉及智慧医疗技术领域,为解决现有技术中缺少基于深度学习的将病历与影像学数据相结合方法的问题。包括:步骤1、获取患者病历数据和影像数据,根据有无痛风石将影像数据插入到对应患者的病历数据,得到合并病历数据集;步骤2、对数据进行预处理;步骤3、将病历数据输入构建有自定义自注意力机制的LSTM‑DNN进行特征信息提取,得到特征W1;针对有痛风石的数据,则将影像数据输入3D‑CNN模型中进行特征提取,得到特征W2,并将特征W2对应的特征W1利用多模态交叉注意力进行融合,得到最终特征信息;步骤4、将最终特征信息输入到痛风病多分期预测模型中进行痛风的分期预测。本发明用于痛风病多分期预测。
-
公开(公告)号:CN114282652B
公开(公告)日:2024-06-21
申请号:CN202111578391.1
申请日:2021-12-22
Applicant: 哈尔滨工业大学
IPC: G06N3/0499 , G06N3/084 , G06N3/098 , G06F21/60 , G06F21/62
Abstract: 本发明提出一种隐私保护的纵向深度神经网络模型构建方法、计算机及存储介质,属于隐私保护模型构建技术领域。首先,发起方和所有参与方找出共有的样本ID,生成自己的公私钥对,利用公钥对中间数据进行加密;其次,参与方基于本地数据集与发起方进行安全前向传播过程,使发起方获得深度神经网络模型交互层的真实加权值;最后,参与方和发起方进行安全反向传播过程,发起方基于加权值计算交互层中间误差,使双方各自获得更新交互层模型参数的梯度,进行深度神经网络交互层模型的更新,得到纵向深度神经网络模型。在无可信第三方的前提下保护数据隐私安全,对不同神经网络结构进行多方安全联合建模。解决构建模型成本高、风险大、结构敏感的问题。
-
公开(公告)号:CN117494208A
公开(公告)日:2024-02-02
申请号:CN202311546448.9
申请日:2023-11-20
Applicant: 哈尔滨工业大学 , 中数(深圳)时代科技有限公司
IPC: G06F21/62 , G06F21/64 , G06N3/0475 , G06N3/098 , G06N3/094
Abstract: 一种基于生成对抗网络的多模态投毒攻击的防御方法、电子设备及存储介质,属于人工智能安全技术领域。为加强对联邦学习过程中投毒攻击的特征数据安全性,本发明攻击方对图像训练数据进行投毒攻击,得到图像毒化样本数据;攻击方对文本训练数据进行投毒攻击,得到文本毒化样本数据;构建投毒模型,攻击方将得到的图像毒化样本数据或得到的文本毒化样本数据混入训练数据集中,得到毒化训练数据集用于训练构建的投毒模型;基于得到的投毒模型构建多模态投毒攻击的防御方法,包括建立第三方参数服务器用于校验本地模型和全局模型之间的差距,用欧几里得距离度量本地模型和全局模型之间的差距,中央服务器对上传的模型参数进行数据处理。
-
公开(公告)号:CN117216779A
公开(公告)日:2023-12-12
申请号:CN202311237912.6
申请日:2023-09-22
Applicant: 哈尔滨工业大学 , 中数(深圳)时代科技有限公司
Abstract: 本发明提出基于余弦相似度和同态加密的联邦学习安全聚合方法,属于安全聚合技术领域。包括参数服务器Server1、辅助计算服务器Server2和多个参与联邦学习客户端;参数服务器Server1、辅助计算服务器Server2默认不互相勾结,客户端训练为:S1.客户端执行梯度密文上传,客户端利用各自的隐私数据对上轮获得的模型进行训练,得到相应的梯度更新,并将梯度明文通过同态加密技术使用同一公钥加密得到梯度密文,传输给参数服务器Server1;S2.Server1执行梯度聚合和贡献值计算;S3.梯度更新发布。解决搭便车攻击者和投毒攻击的检测难度大的问题,在隐私保护同时保证联邦学习的鲁棒性和公平性。
-
公开(公告)号:CN113360896B
公开(公告)日:2022-09-20
申请号:CN202110619300.8
申请日:2021-06-03
Applicant: 哈尔滨工业大学 , 上海浦东发展银行股份有限公司
Abstract: 本发明提出了一种横向联邦学习架构下的Free rider攻击检测方法,属于人工智能安全领域。本发明首先,通过模型参数增量处理获取高维样本,对高维样本进行降维处理,抽取三部分特征,将特征合并得到压缩后的样本,在评估网络中计算样本的能量,根据能量判断攻击者,由于Free Rider攻击者生成的模型参数是在原本的全局模型参数的基础上按照训练的轮次加入差分扰动,因此在对其计算本地模型参数增量之后,其增量值等于攻击中加入的差分扰动,估计网络在评估样本的似然性时,其样本能量值的平均值会偏高,因此这样的样本数据会被检测为异常,我们设置阈值判断出Free Rider攻击者。解决了基于横向联邦学习架构下的Free Rider攻击的检测能力差的技术问题。
-
公开(公告)号:CN113360897A
公开(公告)日:2021-09-07
申请号:CN202110620214.9
申请日:2021-06-03
Applicant: 哈尔滨工业大学 , 上海浦东发展银行股份有限公司
Abstract: 本发明提出了一种横向联邦学习架构下的Free Rider攻击方法,属于人工智能安全领域。本发明首先,接收参数服务器发送的全局模型,并对接收的全局模型进行伪装处理,通过对全局模型进行加噪,并添加差分时变扰动处理获取Free rider攻击模型参数,最后将伪装成自己训练得到的模型参数返回给参数服务器。随着迭代轮次的增加,噪声水平呈现一定的收敛性,在实验中,我们调整的噪声水平系数m以及衰减参数γ,用来躲避检测。解决了Free rider攻击方法很容易被参数服务器检测出的技术问题。
-
公开(公告)号:CN110874348A
公开(公告)日:2020-03-10
申请号:CN201911106280.3
申请日:2019-11-13
Applicant: 哈尔滨工业大学 , 电子科技大学广东电子信息工程研究院
Abstract: 本发明属于大数据的技术领域,具体涉及一种混合云环境下隐私的差异化数据检索方法,包括确定目标关键字,向数据文件输入检索请求,显示数据文件的关键字,度量数据文件的关键字与目标关键字的距离值,通过距离值构建数据检索索引,获得检索结果。本发明不仅同时提高了用户在大数据中的搜索速度和在大数据中信息的传输速度,还扩大了搜索的空间和搜索关键字的语义空间,从而使攻击者不能准确地推断出文件的内容,有效地解决了混合云环境下隐私泄露的问题。
-
公开(公告)号:CN110866275A
公开(公告)日:2020-03-06
申请号:CN201911106252.1
申请日:2019-11-13
Applicant: 哈尔滨工业大学 , 电子科技大学广东电子信息工程研究院
IPC: G06F21/62 , G06F16/953 , G06F16/2458
Abstract: 本发明属于信息安全技术领域,具体涉及一种隐私保护的大数据的近似检索方法,包括步骤1、用户提出数据搜索请求,并将该请求提交给搜索引擎;步骤2、搜索引擎接收搜索请求,搜集当前数据平台的状态信息,并对搜索请求的可行性进行预估;步骤3、若预估结果与搜索请求不同,则拒绝该请求;若预估结果与搜索请求一致,则进行实施;步骤4、数据平台将实施结果返回给搜索引擎,并由搜索引擎呈现给用户。与现有技术相比,本发明针对大数据搜索目前尚无“精度、时效、隐私保护粒度”等多维一体的整体性解决方案的问题,实现大数据搜索三大维度相协的数据检索方案,解决了由同构搜索、数据版本更新所带来的重搜索问题,提升通用搜索的检索效率。
-
-
-
-
-
-
-
-
-