高励磁性能后加载磁场霍尔推力器磁路结构及设计方法

    公开(公告)号:CN114658625A

    公开(公告)日:2022-06-24

    申请号:CN202210294828.7

    申请日:2022-03-24

    Abstract: 高励磁性能后加载磁场霍尔推力器磁路结构及设计方法,所述结构包含内磁极、内铁芯、内线圈、内磁屏、底板、外壳、外线圈、外磁屏、外磁极、内永磁体和外永磁体,内永磁体固定在内磁极的上表面上,外永磁体固定在外磁极的上表面上;所述方法为组装磁路结构,内永磁体和外永磁体磁场沿推力器轴向,且方向相反,永磁体固定的磁力线方向可提供后加载磁场,采用永磁励磁形成一定后加载程度的主磁场,并采用线圈励磁形成后加载程度相同的调节磁场,实现通过线圈励磁调整通道内最大磁场强度。本发明可降低磁路内磁饱和程度,并增加后加载磁场霍尔推力器设计自由度。

    一种多环导磁柱霍尔推力器磁路结构

    公开(公告)号:CN113133173B

    公开(公告)日:2022-05-10

    申请号:CN202110411674.0

    申请日:2021-04-16

    Abstract: 一种多环导磁柱霍尔推力器磁路结构,包含底板、内铁芯、磁极片、N组通道磁屏环和若干个导磁柱;内铁芯和N组通道磁屏环由内至外同心设置,在相邻两个通道磁屏环之间以及第N组通道磁屏环外侧分别沿周向均匀布置有多个导磁柱,形成等效导磁环,内铁芯、N组通道磁屏环和多个导磁柱均连接在底板上,内铁芯和导磁柱周侧面均缠绕有线圈,每组通道磁屏环为顶部开口的双环结构,通道磁屏环与底板垂直,内铁芯的顶部和每个导磁环的顶部连接有磁极片,其中内铁芯和布置在内铁芯顶部的磁极片均为中空结构;每个磁极片上的通孔与对应的导磁柱间隔排布。本发明可有效提升多环霍尔推力器磁路散热能力进而降低磁路温度,提升可靠性及放电稳定性。

    一种霍尔推力器阳极结构
    13.
    发明授权

    公开(公告)号:CN111219307B

    公开(公告)日:2022-03-01

    申请号:CN201910243684.0

    申请日:2019-03-28

    Abstract: 本发明提供了一种霍尔推力器阳极结构,包括配气腔和配气挡板,配气腔为纵向轴截面为等腰梯形的环形腔体结构,配气挡板与阳极所处位置磁力线平行设置,配气挡板包括内挡板环和外挡板环,配气腔由外侧壁、上端面、内侧壁和下端面围合而成,内挡板环与配气腔的内侧壁固定连接,外挡板环与配气腔的外侧壁固定连接,在配气腔的内侧壁和外侧壁上沿周向对称均匀开有多个径向出气孔,内挡板环和外挡板环与各自侧的侧壁之间形成气体混合腔。本发明简化阳极气体分配器一体化结构的加工和安装过程,降低成本,均匀化推力器工质气体扩散,减少放电通道内的电子对一体化结构的溅射侵蚀,优化推力器电离和放电性能。

    一种霍尔推力器推力矢量偏心计算方法

    公开(公告)号:CN113465494A

    公开(公告)日:2021-10-01

    申请号:CN202110733060.4

    申请日:2021-06-29

    Abstract: 一种霍尔推力器推力矢量偏心计算方法,包含以下步骤:步骤一:采用法拉第探针测量霍尔推力器羽流区离子电流密度;步骤二:分析离子电流密度对推力矢量偏心的贡献;步骤三:建立霍尔推力器羽流区的空间离子电流密度曲面模型;步骤四:采用加权最小二乘法对曲面模型进行计算,得到计算推力矢量偏心的非线性方程组;采用布罗依登秩方法进行求解非线性方程组,并通过迭代方程反复迭代计算,得到推力矢量偏心结果。本发明通过分析与推力器轴线不同夹角处离子电流密度对推力矢量的贡献,计算推力矢量偏心。

    一种改变中置阴极背景磁场的磁路结构

    公开(公告)号:CN113374662A

    公开(公告)日:2021-09-10

    申请号:CN202110733039.4

    申请日:2021-06-29

    Abstract: 一种改变中置阴极背景磁场的磁路结构,涉及霍尔推力器技术领域,针对现有技术中置阴极方案的霍尔推力器的阴极背景磁场强度影响发动机放电性能,导致降低了发动机的效率的问题,本申请采用中置励磁线圈的方式,改变中置阴极的背景磁场,以减少阴极发射的电子束跨越磁力线的阻力,从而降低耦合压降。本发申请所提出的磁路形成的中轴线磁场,可以通过调节中置线圈的励磁电流实现中轴线上最大磁场强度、阴极上端面处磁场强度、阴极上端面处磁场梯度的连续调节。其中阴极上端面处磁场强度在‑21%到21%范围内连续可调,阴极上端面处磁场梯度在‑28%到28%范围内连续可调,进而降低了背景磁场对中置阴极影响,进而解决了降低发动机效率的问题。

    一种射频离子推力器点火装置

    公开(公告)号:CN113357109A

    公开(公告)日:2021-09-07

    申请号:CN202110734035.8

    申请日:2021-06-30

    Abstract: 本发明提供了一种射频离子推力器点火装置,涉及射频离子推力器技术领域,该装置包括金属进气管、主电离室、副电离室、主线圈、附加线圈和屏栅极。工作状态下,屏栅极接入直流高压电源,同时缠绕在主电离室上的主线圈接入射频功率源,缠绕在副电离室上的附加线圈感应出正弦高压,因金属进气管与附加线圈的一端等电位连接,故屏栅极与金属进气管间的强电场有一半几率被加强;被加强后的电场击穿更多工质成为等离子体,高密度的等离子体扩散至主电离室与未电离的工质加速碰撞,使主电离室内的工质完全电离,降低了主线圈上的射频功率源的输入功率,实现低功率点火操作。

    一种微型离子推力器的栅极组件装配结构及装配方法

    公开(公告)号:CN113279930A

    公开(公告)日:2021-08-20

    申请号:CN202110731821.2

    申请日:2021-06-30

    Abstract: 本发明公开一种微型离子推力器的栅极组件装配结构及装配方法,包括陶瓷底座、屏栅、加速栅和陶瓷垫片,陶瓷底座通过螺栓固定在推力器主体上,屏栅和加速栅安装在陶瓷底座上;屏栅和加速栅均由圆形金属薄片经化学刻蚀加工而成,屏栅和加速栅的一面保持平整,另一面为刻蚀区域形成的凹槽,且屏栅和加速栅上的刻蚀区域与推力器主体的截面积相等;屏栅和加速栅上的刻蚀区域内加工有栅极孔;屏栅带有凹槽的一侧朝向推力器主体并直接放置在陶瓷底座上,陶瓷垫片设置于屏栅和加速栅之间,加速栅具有凹槽的一侧朝向外部;陶瓷垫片与屏栅的厚度之差即为两个栅极之间的距离。本发明能够简化栅极组件安装方式并避免各组件之间出现短路现象。

    一种微阴极电弧推力阵列系统

    公开(公告)号:CN111516907B

    公开(公告)日:2021-08-10

    申请号:CN202010342613.9

    申请日:2020-04-27

    Abstract: 本发明公开了一种微阴极电弧推力阵列系统,涉及卫星微推进技术领域,包括一个由多组微阴极电弧推力器按照偶数正多边形放置方式排布集成的推力器集成部、一个功率输出单元和一个控制部;功率输出单元的输出端通过控制部与推力器集成部的阳极连接,推力器集成部的阴极与功率输出单元的输入端连接;其中,多组微阴极电弧推力器的阴极共用;通过控制部控制推力器集成部不同阳极与阴极间的通断,以达到多组微阴极电弧推力器轮流放电的目的;通过改变控制部的放电模式,以使微阴极电弧推力器在多种工作模式中选择,达到满足不同推进需求的目的。本发明具有质量和体积均减小、推重比和可靠性均上升、更好满足卫星推进需求等功能。

    一种基于电离与加速过程解耦的离子风推力装置

    公开(公告)号:CN111706481B

    公开(公告)日:2021-06-22

    申请号:CN202010564374.1

    申请日:2020-06-19

    Abstract: 本发明涉及一种基于电离与加速过程解耦的离子风推力装置。离子风推力装置包括电离电极、中间电极、集电极、电离电源和加速电源,电离电极与电离电源连接,中间电极与加速电源连接,电离电极与中间电极之间形成电离区,中间电极与集电极之间形成加速区,通过调整电离电源输出电压的大小或电离区的距离改变电离区的带电粒子浓度,实现了电离区的单独控制,通过调整加速电源输出电压的大小或加速区的距离改变加速区的电场强度,实现了加速区的单独控制,即实现了电离与加速的解耦;并且通过电离区与加速区的控制匹配,使带电粒子在加速区的运动过程中完全与中性气体分子发生碰撞并进行能量交换,提高了离子风推力器的电‑动能转换效率。

Patent Agency Ranking