增量宽度和深度学习的药物反应预测方法、介质和设备

    公开(公告)号:CN114841261B

    公开(公告)日:2024-08-02

    申请号:CN202210464986.2

    申请日:2022-04-29

    Abstract: 本发明提供了一种增量宽度和深度学习的药物反应预测方法、介质和设备;其中方法为:将药物的序列进行文本编码和位置编码,构建药物信息编码;将药物信息编码输入到Transformer编码器中挖掘药物的结构化特征,同时把基因表达数据输入到多层感知机学习基因的特征表示,将药物特征和基因特征拼接在一起形成药物‑基因特征对;将特征对输入到宽度学习系统中得到预测的药物敏感度回归值。该方法可解决药物表示不佳的问题;采用宽度学习系统来融合药物表示和基因表达特征,提高药物敏感性预测结果的准确性;通过增量学习算法更新网络权重,提升模型性能,无需重新训练整个模型。

    基于深度学习的化学反应转化率预测方法、系统及介质

    公开(公告)号:CN114203264B

    公开(公告)日:2024-05-14

    申请号:CN202111444354.1

    申请日:2021-11-30

    Abstract: 本发明公开了基于深度学习的化学反应转化率预测方法、系统及介质,方法包括:从参加化学反应的反应物的所属类型中选出对化学反应转化率影响最大的反应物类型A,并进行反应物类型A的反应物和化学反应对应的化学反应式R的分词及特征提取,接着通过注意力机制求反应物类型A的反应物的深层表征信息Ta、化学反应对应的化学反应式R的深层表征信息Tr、反应物和反应式的关系信息Tm,最后利用宽度学习系统对反应物类型A的反应物的深层表征信息Ta、化学反应对应的化学反应式R的深层表征信息Tr、反应物和反应式的关系信息Tm进行融合,预测化学反应转化率。本发明大大提高了化学反应转化率的预测精度。

    增量宽度和深度学习的药物反应预测方法、介质和设备

    公开(公告)号:CN114841261A

    公开(公告)日:2022-08-02

    申请号:CN202210464986.2

    申请日:2022-04-29

    Abstract: 本发明提供了一种增量宽度和深度学习的药物反应预测方法、介质和设备;其中方法为:将药物的序列进行文本编码和位置编码,构建药物信息编码;将药物信息编码输入到Transformer编码器中挖掘药物的结构化特征,同时把基因表达数据输入到多层感知机学习基因的特征表示,将药物特征和基因特征拼接在一起形成药物‑基因特征对;将特征对输入到宽度学习系统中得到预测的药物敏感度回归值。该方法可解决药物表示不佳的问题;采用宽度学习系统来融合药物表示和基因表达特征,提高药物敏感性预测结果的准确性;通过增量学习算法更新网络权重,提升模型性能,无需重新训练整个模型。

    一种基于深度学习的逆合成预测方法、装置、介质及设备

    公开(公告)号:CN114220496A

    公开(公告)日:2022-03-22

    申请号:CN202111441439.4

    申请日:2021-11-30

    Abstract: 本发明提供了一种基于深度学习的逆合成预测方法、装置、介质及设备;其中,方法包括如下步骤:将目标产物转换为SMILES序列;对SMILES序列进行结构信息的提取,结构信息包括度信息和邻接矩阵信息;进行编码得到度信息编码和邻接信息编码;将SMILES序列输入Transformer模型编码器中,并利用度信息编码和邻接信息编码来优化对SMILES序列的编码;Transformer模型将编码器的编码结果输入到解码器中进行解码,得到反应物集合的SMILES序列,进而转换得到相应的反应物。该方法解决了SMILES序列不能充分考虑分子结构信息的问题,提高了模型预测结果的准确度。

Patent Agency Ranking