四连杆直推式压电直线电机

    公开(公告)号:CN115051596A

    公开(公告)日:2022-09-13

    申请号:CN202210830268.2

    申请日:2022-07-15

    Abstract: 本发明提供四连杆直推式压电直线电机,由定子、滑动基座、预压机构、动子及底座组成。定子由两个四连杆组件构成,四连杆组件由四连杆机构、叠层压电陶瓷、预紧拉簧、调节螺柱、驱动足组成;定子通过螺栓固定在滑动基座上,而滑动基座通过交叉滚子及其导轨固定块安装在底座上,预压机构为压电直线电机提供可调节的预压力,通过滑动基座传递到定子驱动足与动子的接触面上,分别给电机的两组叠层压电陶瓷施加相位差90°的电信号,可以实现电机双足交替驱动。

    一种基于语义偏好挖掘的行人再辨识方法

    公开(公告)号:CN118196840B

    公开(公告)日:2024-08-09

    申请号:CN202410610290.5

    申请日:2024-05-16

    Applicant: 华侨大学

    Abstract: 本发明公开了一种基于语义偏好挖掘的行人再辨识方法,涉及人工智能、机器视觉领域,包括:利用预训练的语义分割模型将行人图像处理为语义分割图,将语义分割图空间划分为若干部件语义块,计算不同语义在语义分割图与部件语义块中的比例,根据不同语义的比例对部件语义块分组进行语义对齐,获得各部件语义块分组对应的部件序号;基于部件序号对部件特征分组,利用自注意网络将各部件特征组投影到公共嵌入空间并进行偏好挖掘,继而利用偏好信息对各部件特征组进行自适应聚合,增强行人再辨识准确性。

    一种交替划船式压电直线电机

    公开(公告)号:CN112737401B

    公开(公告)日:2024-06-07

    申请号:CN202011612252.1

    申请日:2020-12-30

    Abstract: 本发明公开了一种交替划船式压电直线电机,由定子及其U形外框、连接块、动子及其弹性预压机构、底座组成;定子由两层定子组合体组成,定子组合体由位移放大机构、两组叠层压电陶瓷、柔性支撑、预紧机构、两个球面垫块组成;定子固定连接在U形外框内,U形外框的下框与连接块通过螺栓固定在底座上;弹性预压机构沿着U形外框的宽度方向设置在U形外框的两侧并与U形外框之间形成一定空隙,动子的接触平板包括设置在空隙内的第一部分,以及搭接在弹性预压机构上表面的第二部分;弹性预压机构在弹性形变产生的预压力作用下保持动子与定子的接触。给电机的四组叠层压电陶瓷施加相位依次延后90°电信号,可实现电机双驱动足的交替驱动。

    一种基于前景感知动态部件学习的行人再辨识方法

    公开(公告)号:CN117456560B

    公开(公告)日:2024-03-29

    申请号:CN202311775203.3

    申请日:2023-12-22

    Applicant: 华侨大学

    Abstract: 本发明公开了一种基于前景感知动态部件学习的行人再辨识方法,涉及人工智能、机器视觉领域,包括:将浅层特征映射解码为前景能量图,利用交叉熵优化前景能量图,使其趋于真实前景标签,再将前景能量图空间划分为若干部件能量块,用各个部件能量块代表相应的浅层特征映射块的当前重要性;结合当前重要性和历史重要性对各浅层特征映射块进行综合重要性计算并排序,根据综合重要性排序优先选择高综合重要性的浅层特征映射块参与行人再辨识模型训练,从而减少来自背景区域的低综合重要性的浅层特征映射块参与行人再辨识模型训练的机会,达到抑制背景区域对行人辨识的干扰,提升行人再辨识准确性,可广泛应用于智慧城市场景中的城市安防系统。

    基于全局特征与头肩特征多核融合的行人识别方法及装置

    公开(公告)号:CN118397659A

    公开(公告)日:2024-07-26

    申请号:CN202410828405.8

    申请日:2024-06-25

    Applicant: 华侨大学

    Abstract: 本发明公开了一种基于全局特征与头肩特征多核融合的行人识别方法及装置,涉及图像识别领域,包括:采用经训练的行人头肩部检测模型对行人图像进行头肩部检测,得到行人头肩部图像;在行人识别模型中,将行人图像和行人头肩部图像分别输入全局特征提取分支和头肩特征提取分支,得到全局特征向量和头肩特征向量并输入多核融合模块进行融合,得到融合特征向量,根据全局特征向量、头肩特征向量和融合特征向量构建损失函数,以训练行人识别模型,得到经训练的行人识别模型;将待识别的行人图像及其对应的行人头肩部图像输入经训练的行人识别模型,得到对应的融合特征向量,再进行行人识别。本发明解决鱼眼摄像机下图像特征差异大、准确度低的问题。

    一种基于语义偏好挖掘的行人再辨识方法

    公开(公告)号:CN118196840A

    公开(公告)日:2024-06-14

    申请号:CN202410610290.5

    申请日:2024-05-16

    Applicant: 华侨大学

    Abstract: 本发明公开了一种基于语义偏好挖掘的行人再辨识方法,涉及人工智能、机器视觉领域,包括:利用预训练的语义分割模型将行人图像处理为语义分割图,将语义分割图空间划分为若干部件语义块,计算不同语义在语义分割图与部件语义块中的比例,根据不同语义的比例对部件语义块分组进行语义对齐,获得各部件语义块分组对应的部件序号;基于部件序号对部件特征分组,利用自注意网络将各部件特征组投影到公共嵌入空间并进行偏好挖掘,继而利用偏好信息对各部件特征组进行自适应聚合,增强行人再辨识准确性。

    基于云边搜索联邦深度学习方法的行人再辨识方法及系统

    公开(公告)号:CN117373066A

    公开(公告)日:2024-01-09

    申请号:CN202311667337.3

    申请日:2023-12-07

    Applicant: 华侨大学

    Abstract: 本发明公开了一种基于云边搜索联邦深度学习方法的行人再辨识方法及系统,涉及机器学习技术领域,方法包括以下步骤:S1,云端初始化全局深度网络模型,S2,云端将全局深度网络模型下发给边缘设备;S3,边缘设备利用个性化初始化函数构建总体优化目标函数,进行边缘深度网络模型训练;S4,云端对边缘深度网络模型权重参数进行加权平均聚合以更新云端全局深度网络模型;S5,重复S2至S4至最大次数,将最后一次生成的云端全局深度网络模型作为行人再辨识模型;S6,利用行人再辨识模型实现行人再辨识。本发明在保护数据隐私的前提下,让各个边缘设备根据本地数据特性个性化初始化自身网络,提升联邦学习中边缘深度网络和云端全局深度网络模型的性能。

    面向大范围车辆再辨识的不完备模态特征融合方法

    公开(公告)号:CN117315430A

    公开(公告)日:2023-12-29

    申请号:CN202311595144.1

    申请日:2023-11-28

    Applicant: 华侨大学

    Abstract: 本发明一种面向大范围车辆再辨识的不完备模态特征融合方法,涉及图像处理技术领域,包括:训练包括三通道模型和单通道模型的双模态模型,对可见光车辆图像,采用三通道模型提取主特征,辅以图像灰度化,采用单通道模型提取辅助特征;对红外光车辆图像,采用单通道模型提取主特征,辅以通道复制扩展,采用三通道模型提取辅助特征;将主特征和辅特征叠加获得完整特征,利用KL散度优化完整、主、辅特征三者之间后验概率分布差异,优化特征融合效果。本发明能解决在长时间大范围的监控场景中车辆因活动轨迹复杂多变出现的模态不完备问题,即可见光和红外车辆图像不完备而无法直接实现可见光和红外图像的特征融合问题,提升车辆再辨识准确性。

Patent Agency Ranking