一种基于三维铸件模型特征提取的缺陷预测方法及系统

    公开(公告)号:CN116822341B

    公开(公告)日:2024-06-21

    申请号:CN202310695758.0

    申请日:2023-06-12

    Abstract: 本发明提供了一种基于三维铸件模型特征提取的缺陷预测方法及系统,属于铸造产品质量预测领域,方法包括:采用预设规格的包容体作为铸型将三维待测铸件包裹,构建三维待测铸件模型,并对三维待测铸件模型进行网格剖分,获取三维待测铸件数组;将三维待测铸件数组输入至训练好的3D‑DCAE模型中,经过三维卷积层和池化层,获取四个三维形貌矩阵;将三维形貌矩阵中每个元素离中心点元素之间的距离与元素值相乘后求和,获取各三维形貌矩阵对应的矩阵特征值;将金属液浇注温度、浇注速度和金属液中的工艺参数与三维形貌矩阵对应的矩阵特征值作为缺陷预测神经网络的输入,引入代价敏感学习进行缺陷预测。本发明解决了预测模型泛化能力弱问题。

    一种基于多维特征分析的气孔与低密度夹杂分类方法

    公开(公告)号:CN116452873A

    公开(公告)日:2023-07-18

    申请号:CN202310419719.8

    申请日:2023-04-13

    Abstract: 本发明属于缺陷检测技术领域,并提供了一种基于多维特征分析的气孔与低密度夹杂分类方法,包括以下步骤:采集待分析区域的子图像;构建多维特征判别指标,并基于多维特征判别指标获取每个维度下子图像的缺陷判别结果,特征判别指标包括边缘曲率、灰度分布、缺陷外框长宽比和缺陷面积及其最大周长平方的比,缺陷判别结果为气孔或低密度夹杂;对所有维度对应的缺陷判别结果分类汇总,获得气孔类缺陷和低密度夹杂类缺陷,对各个维度分配特定权重,并基于特定权重分别计算气孔类缺陷和低密度夹杂类缺陷对应的判别系数,比对判别系数的大小,判别系数较大的缺陷类别即为待分析区域的最终缺陷类别。本发明的缺陷判别准确性更高。

    一种基于三维模型和探伤图像的铸件缺陷检测方法及系统

    公开(公告)号:CN115713622A

    公开(公告)日:2023-02-24

    申请号:CN202211446602.0

    申请日:2022-11-18

    Abstract: 本发明提供一种基于三维模型和探伤图像的铸件缺陷检测方法及系统,包括:基于虚拟射线成像系统对铸件的三维模型进行射线仿真成像,得到铸件的仿真探伤图像;基于射线探伤系统对铸件进行射线成像,得到铸件的真实探伤图像;所述虚拟射线成像系统与射线探伤系统的成像参数相同,所述成像参数包括:铸件角度、射线角度及成像参数;对仿真探伤图像和真实探伤图像进行对比,确定铸件的缺陷信息;所述缺陷信息包括缺陷的形貌和位置;基于铸件的缺陷信息对缺陷进行分类。本发明通过无缺陷仿真探伤图像与真实铸件探伤图像的对比法能很好的对图像中铸件结构和铸件缺陷的区域进行区分,不易将铸件结构纳入误检的范围,大大提高了铸件缺陷检测的准确率。

Patent Agency Ranking