-
公开(公告)号:CN101555532A
公开(公告)日:2009-10-14
申请号:CN200910084739.4
申请日:2009-05-22
Applicant: 北京科技大学
IPC: C21B5/00
CPC classification number: Y02P10/122 , Y02P10/128
Abstract: 一种冷固结含碳球团氧气高炉炼铁方法,属于高炉炼铁领域。其特征是以70~100%含碳球团和0~30%烧结矿作为炼铁原料从炉顶加入高炉,以焦炭、喷吹煤粉作为高炉燃料,其中吨铁焦炭用量在200~250kg/tHM;含碳球团的碳含量在1~20%之间,TFe含量在50~65%之间;含碳球团平均抗压强度在1000~2000N/个。含碳球团在高炉内进行自还原过程,从而改变还原反应的气相分压,降低高炉焦炭负荷,同时在高炉风口鼓入常温氧气,取消传统的热风炉,氧气用量为200~500Nm3/tHM;可向外供给高热值(7000~8000kJ/Nm3)的煤气,高炉产生的煤气经过除尘和预热装置后循环利用,分别从炉身下部和风口喷入高炉;该工艺的理论燃烧温度控制在1900~2300℃;该炼铁工艺焦比可降到200~250kg/tHM,煤比200~300kg/tHM以上。
-
公开(公告)号:CN103601377B
公开(公告)日:2015-08-12
申请号:CN201310544436.2
申请日:2013-11-05
Applicant: 北京科技大学
IPC: C04B5/00
Abstract: 本发明属于冶金和无机非金属材料领域,提供了一种利用高炉熔渣生产铸石的可控温模铸工艺方法及其设备。该工艺方法步骤如下:(1)高炉熔渣温度保持高炉出铁口时的温度区间转移至成分调质搅拌池中,加入相应改质剂和着色剂,搅拌均匀;(2)熔渣通过渣口进入模具中进行模铸成型或进入铸箱中进行无定型模铸处理;(3)脱模后的产品进入保温箱,喷涂釉质材料进行表面着色处理,在保温箱中逐步冷却至室温得到成型的产品;(4)成型的产品进行表面打磨抛光得到成品铸石。本发明充分利用了高炉熔渣和废弃物资源,生产的铸石用途广泛,适合大规模生产,并且具有色质稳定、抗磨、耐压、耐酸碱、膨胀收缩系数小等特性。
-
公开(公告)号:CN103553340B
公开(公告)日:2015-08-12
申请号:CN201310541499.2
申请日:2013-11-05
Applicant: 北京科技大学
Abstract: 本发明属于冶金和无机非金属材料领域,提供一种利用高炉熔渣生产微晶玻璃的模铸工艺方法及其设备。该工艺方法步骤如下:(1)高炉熔渣保持在高炉出铁口时的温度区间转移至成分调质搅拌池,加入改质剂、着色剂和形核剂,搅拌均匀,并保证熔渣处在高温区间;(2)熔渣通过渣口进入各种模具,迅速冷却进行玻璃化;(3)继续降温至不低于500℃后脱模进入核化区升温至700~800℃保温;(4)继续升温至晶化区;(5)进入降温区,冷却得到成型产品;(6)成型产品进行表面打磨抛光得到成品微晶玻璃。本发明充分利用了高炉熔渣和固体废弃物资源,成品微晶玻璃具有强度高,耐腐蚀,颜色多等优点,有明显经济效益和环保效益。
-
公开(公告)号:CN103553337B
公开(公告)日:2015-08-12
申请号:CN201310542523.4
申请日:2013-11-05
Applicant: 北京科技大学
Abstract: 一种利用高炉熔渣生产微晶玻璃的烧结工艺方法及其设备,属于冶金和无机非金属材料领域。该工艺方法的主要步骤有:(1)高炉熔渣转移至成分调质搅拌池,加入改质剂、着色剂和形核剂,搅拌均匀,保证熔渣温度;(2)熔渣由渣口进入水淬池水淬形成玻璃颗粒;(3)玻璃颗粒细磨、筛分后,合格玻璃颗粒烘干;(4)玻璃颗粒烘干后布料至棚板上,进入核化区;(5)在核化区升温至700~800℃保温;(6)进入晶化区,升温至900~1100℃保温;(7)进入降温区,冷却得到产品,合格产品进行表面打磨抛光得到成品微晶玻璃。本发明充分利用了高炉熔渣和固体废弃物资源,产品微晶玻璃具有强度高,耐腐蚀,颜色多等优点,经济效益和环保效益显著。
-
公开(公告)号:CN103571989B
公开(公告)日:2015-01-28
申请号:CN201310532855.4
申请日:2013-10-31
Applicant: 北京科技大学
Abstract: 本发明公开了一种超高温煤粉燃烧实验装置,属于高炉炼铁技术领域,解决了超高温条件下煤粉燃烧率检测的问题,同时该装置可用于生物质等的新型燃料燃烧率的检测。该装置包括气体混合罐、气体预热炉、气体加速器、煤粉螺旋给料器、流量计、快速切断阀、混合管、电弧燃烧室、电弧控制柜、粉尘收集器、二次除尘器、气体分析仪、计算机、数据线、尾气处理装置。本发明可以使煤粉按照不同流量均匀、连续喷入燃烧室。同时采用气体加速器加速热风,采用电弧燃烧室产生超高温燃烧煤粉,可以使煤粉燃烧状态更加接近于高炉实际工况。为高炉煤粉高效燃烧提供合理的工艺参数和喷煤方案。
-
公开(公告)号:CN103553557A
公开(公告)日:2014-02-05
申请号:CN201310541643.2
申请日:2013-11-05
Applicant: 北京科技大学
CPC classification number: Y02W30/94
Abstract: 本发明属于冶金和无机非金属材料领域,提供了一种利用高炉熔渣生产铸石的连铸压延工艺方法及其设备。该工艺方法步骤如下:(1)高炉熔渣转移至成分调质搅拌池中,加入改质剂和着色剂,搅拌均匀;(2)熔渣通过渣口进入一次降温区初步成型得到坯壳,然后进入二次降温区辊道;(3)二次降温区保证初步成型的坯壳顺利进入保温箱辊道中进行下一步的冷却最终成型;(4)在保温箱中冷却,喷涂釉质材料进行表面着色处理,冷却得到成型产品;(5)成型产品进行定尺寸切割处理,并进行表面打磨抛光得到成品铸石。本发明充分利用了高炉熔渣和废弃物资源,生产的铸石用途广泛,并具有色质稳定、抗磨、耐压、耐酸碱、膨胀收缩系数小等特性。
-
公开(公告)号:CN103553340A
公开(公告)日:2014-02-05
申请号:CN201310541499.2
申请日:2013-11-05
Applicant: 北京科技大学
Abstract: 本发明属于冶金和无机非金属材料领域,提供一种利用高炉熔渣生产微晶玻璃的模铸工艺方法及其设备。该工艺方法步骤如下:(1)高炉熔渣保持在高炉出铁口时的温度区间转移至成分调质搅拌池,加入改质剂、着色剂和形核剂,搅拌均匀,并保证熔渣处在高温区间;(2)熔渣通过渣口进入各种模具,迅速冷却进行玻璃化;(3)继续降温至不低于500℃后脱模进入核化区升温至700~800℃保温;(4)继续升温至晶化区;(5)进入降温区,冷却得到成型产品;(6)成型产品进行表面打磨抛光得到成品微晶玻璃。本发明充分利用了高炉熔渣和固体废弃物资源,成品微晶玻璃具有强度高,耐腐蚀,颜色多等优点,有明显经济效益和环保效益。
-
公开(公告)号:CN103553300A
公开(公告)日:2014-02-05
申请号:CN201310541239.5
申请日:2013-11-05
Applicant: 北京科技大学
Abstract: 本发明属于冶金和无机非金属材料领域,提供一种利用高炉熔渣生产微晶玻璃的连铸压延工艺方法及其设备。该工艺方法步骤如下:(1)将高炉熔渣保持在高炉出铁口时的温度区间转移至成分调质搅拌池,加入相应改质剂、着色剂和形核剂,搅拌均匀,并保证熔渣处在高温区间;(2)熔渣通过渣口进入压延成型区,随即进入一次降温区,在坯壳表面不低于500℃前进入核化区;(3)继续升温至晶化区;(4)进入降温冷却区,冷却得到成型产品;(5)成型产品进行定尺寸切割处理和表面打磨抛光得到成品微晶玻璃。本发明充分利用了高炉熔渣和固体废弃物资源,生产的微晶玻璃具有强度高,耐酸碱腐蚀,颜色多样等优点,有明显经济效益和环保效益。
-
公开(公告)号:CN102766707B
公开(公告)日:2013-09-25
申请号:CN201210247399.4
申请日:2012-07-17
Applicant: 北京科技大学
CPC classification number: Y02P10/283 , Y02W30/543
Abstract: 本发明提供一种基于煤气化原理的高炉渣余热利用系统,该系统由水气化单元、水气输送管道、冷却水管道、煤气化单元组成,其中水气化单元为煤气化提供气化剂;煤气化单元产生具有一定热值的水煤气,连接这两个单元的是水气输送管道和冷却水管道。本发明将渣中的热量用于煤气化反应的动力,把渣中的热量固化到煤气的化学能之中,通过将渣的热量回收、粒化以及煤气化联系在一起,不仅对渣体进行了有效的冷却,而且将渣中的热量转移到具有发热值的煤气中,是高炉炼铁系统节能减排的一项综合工艺方法。
-
-
-
-
-
-
-
-