-
公开(公告)号:CN110119106B
公开(公告)日:2021-02-09
申请号:CN201910239524.9
申请日:2019-03-27
Applicant: 北京宇航系统工程研究所 , 中国运载火箭技术研究院
IPC: G06F21/60 , G05B19/042
Abstract: 本发明公开了一种基于开盖自毁的设备安全控制系统及方法,其中,该系统包括触发机构和自毁单元;其中,自毁单元包括DC/DC模块、高性能电池、稳压模块、FPGA、加断电控制电路、防短接检测电路和加解密模块;当外部的盖板被恶意拆解时,触发机构工作,高性能电池通过稳压模块转换为3.3v电压、2.5v电压、1.5v电压,并输出给FPGA;同时FPGA检测到自毁检测信息,FPGA将销毁指令发送给加解密模块;加解密模块收到销毁指令后清除存储的信息;FPGA发送完销毁指令后再清除其自身存储的信息。本发明当设备遭到恶意拆解时,能够启动自毁程序,销毁设备内部存储的关键内容和关键信息,防止窃密者通过直接破解内部存储芯片而获得设备中存储的信息。
-
公开(公告)号:CN109947001B
公开(公告)日:2020-11-10
申请号:CN201910190527.8
申请日:2019-03-13
Applicant: 北京宇航系统工程研究所 , 中国运载火箭技术研究院
IPC: G05B19/04
Abstract: 本发明公开了一种电磁阀节能控制电路,包括:DC/DC电路和二极管D2;其中,DC/DC电路和二极管串联;DC/DC电路的输入端与一个外部控制通道相连接;二极管的输出端与另一个外部控制通道相连接,二极管的输出端与被控电磁阀相连接。本发明使控制器具有体积小、重量轻、发热量低的特点,既可应用于地面测发控系统,也可应用于箭上电气系统,具有很高的灵活性。
-
公开(公告)号:CN109995013B
公开(公告)日:2020-08-14
申请号:CN201910239523.4
申请日:2019-03-27
Applicant: 北京宇航系统工程研究所 , 中国运载火箭技术研究院
IPC: H02J1/02
Abstract: 本发明涉及一种提升飞行器长线供电动态响应性能的方法,通过阻值、重量和电容参数的方面精细设计长线电缆,选用不同等级导线减小分布电容电感,减小长线对母线特性的影响。还对升压控制器的输出滤波网络和升压电路设计方面进行整合优化,进一步稳定了升压控制器输出端的母线特性,从源头减小纹波和负载动态变化对母线调节的影响。改进后的卫星供电控制器能够为载荷卫星负载直接供电,减少电源突变或引入干扰对载荷卫星负载二次电源模块的冲击,进一步保证为载荷卫星工作的寿命和可靠性。
-
公开(公告)号:CN109873560B
公开(公告)日:2020-07-14
申请号:CN201910194742.5
申请日:2019-03-14
Applicant: 北京宇航系统工程研究所 , 中国运载火箭技术研究院
Inventor: 王国辉 , 叶成敏 , 崔照云 , 岳玮 , 李茂 , 黄晨 , 王淑炜 , 岳梦云 , 窦振飞 , 徐晨 , 刘巧珍 , 易航 , 邱玉钦 , 刘欣 , 张绪斌 , 郭源 , 肖泽宁 , 穆晖
Abstract: 本发明涉及一种大功率高稳定性升压供电系统,首次直接升压至卫星负载电压后传输,采用升压供电系统后,可以满足同时为多个载荷卫星载荷供电的要求,可以节省载荷卫星在飞行器飞行期间的电池消耗,减小了载荷卫星蓄电池的设计难度,提高了载荷卫星电源系统的供电有效率。采用升压供电系统还解决了飞行器为载荷卫星长距离大功率供电能力不足的问题,使长距离供电电缆设计简单且电缆上的损耗小,提高了供电效率,同时大功率供电时或负载突变时还能稳定母线电压,对负载二次电源模块的设计更加容易。更换升压电路中升压功率部分元器件,改变比较器的阈值后能满足卫星各种母线电压要求,可扩展性好,为飞行器升压电源系统开拓了空间。
-
公开(公告)号:CN111174821A
公开(公告)日:2020-05-19
申请号:CN201911193614.5
申请日:2019-11-28
Applicant: 北京宇航系统工程研究所 , 中国运载火箭技术研究院
Abstract: 一种用于运载火箭的温湿度传感器,属于测量技术领域,包括温湿度敏感头、电路板、电池、电池腔、法兰、天线;温湿度敏感头用于敏感环境温度和湿度;电路板用于采集温湿度敏感头的测量数据,并通过天线发送测量数据;电池舱作与法兰连接后形成中空腔体,电池、电路板、天线均安装在腔体内;电池用于对电路板供电;温湿度敏感头包括ABS防护罩、整体烧结防护罩、湿敏元件、温度敏感元件、探杆;湿敏元件和温度敏感元件安装在探杆的端部,整体烧结防护罩套装在探杆上;ABS防护罩套装在整体烧结防护罩上;ABS防护罩在湿敏元件和温度敏感元件的所在区域设有镂空槽;探杆和ABS防护罩均与法兰连接。
-
公开(公告)号:CN107390741B
公开(公告)日:2019-08-09
申请号:CN201710637380.3
申请日:2017-07-31
Applicant: 北京宇航系统工程研究所 , 中国运载火箭技术研究院
IPC: G05D23/20
Abstract: 一种温度控制方法,用于完成多路温度测量数据的判断,同时剔除不正常数据、筛选最高温度和最低温度、进行温度数据判断、上报状态信息、输出加热控制指令,实现由温度测量到加热控制的闭环管理。所述温度控制方法采用温度控制系统实现,温度控制系统包括温度控制器、温度传感器网络、加热器网络和电源,其中温度控制器包括测温输入模块、CPU模块、加热器控制模块和电源转换模块;温度控制器模块变换、采集、判断温度数据以及采集加热器网络所有工作状态信息,产生加热器控制指令,控制加热器供电通路的接通和断开,实现温度闭环控制。
-
公开(公告)号:CN109995013A
公开(公告)日:2019-07-09
申请号:CN201910239523.4
申请日:2019-03-27
Applicant: 北京宇航系统工程研究所 , 中国运载火箭技术研究院
IPC: H02J1/02
Abstract: 本发明涉及一种提升飞行器长线供电动态响应性能的方法,通过阻值、重量和电容参数的方面精细设计长线电缆,选用不同等级导线减小分布电容电感,减小长线对母线特性的影响。还对升压控制器的输出滤波网络和升压电路设计方面进行整合优化,进一步稳定了升压控制器输出端的母线特性,从源头减小纹波和负载动态变化对母线调节的影响。改进后的卫星供电控制器能够为载荷卫星负载直接供电,减少电源突变或引入干扰对载荷卫星负载二次电源模块的冲击,进一步保证为载荷卫星工作的寿命和可靠性。
-
公开(公告)号:CN115834339A
公开(公告)日:2023-03-21
申请号:CN202211296991.3
申请日:2022-10-21
Applicant: 北京宇航系统工程研究所
Inventor: 马宗瑞 , 卢頔 , 王淑炜 , 王之平 , 刘巧珍 , 黄晨 , 徐勤 , 崔照云 , 白冰 , 张学英 , 张晨光 , 徐晨 , 穆晖 , 岳玮 , 吕明 , 赵心欣 , 李璨 , 王铭瑶 , 李皓伟 , 惠兴晨 , 李玉山 , 边旭 , 陈昌旭 , 苏剑彬
IPC: H04L41/0631 , H04L41/0823 , H04L41/0213 , H04L41/0246 , H04L43/08 , H04L43/045
Abstract: 本发明涉及一种跨域地面测发控网络实时监控系统及方法,该监控系统主要包括末端地面测控网络监控模块和远程网络监控模块;末端地面测控网络监控模块对各型运载火箭前后端通信网络进行实时监控;远程网络监控模块收集和显示末端地面测控网络状态,并对各末端地面测控网络进行控制和状态监测。本发明打破原有的末端地面测控网络监测局域化的壁垒,将局域网络的监测数据收集到一起,实现全域网络监测数据格式统一化、日常运维一体化、控制管理中心化。
-
公开(公告)号:CN112539678B
公开(公告)日:2022-12-09
申请号:CN202011381982.5
申请日:2020-11-30
Applicant: 北京宇航系统工程研究所
Abstract: 本发明一种运载火箭低温动力系统自动发射控制方法,根据发射日不同时段流程的特点对整个发射流程进行阶段规划。每个阶段按工作内容的独立程度划分为若干项工作,每项工作由独立的自动控制程序控制执行。由于判读数据多,算法复杂,故障检测定位难度大且处置要求高,所以在执行自动发射控制的同时,构建故障诊断的数据处理知识库,对流程中的重要数据进行判读,实现故障快速定位,并自动执行故障处置。
-
公开(公告)号:CN109991003B
公开(公告)日:2021-06-11
申请号:CN201910219292.0
申请日:2019-03-21
Applicant: 北京宇航系统工程研究所 , 中国运载火箭技术研究院
IPC: G01M15/00
Abstract: 本发明公开了一种基于声学监测的发动机状态监测与诊断系统,包括声像仪、传声器、多通道数据采集设备和上位机;发动机点火后,传声器和声像仪采集发动机推力建立过程中的声音信号,通过多通道数据采集设备传输到上位机;上位机根据上述声音信号获得发动机不同位置处声音信号声压级、过零率、能量谱分布特征、时频特征随推力建立过程的变化曲线以及火箭周围区域中声信号空间场分布随推力建立过程的变化曲线。本发明进一步给出了利用上述系统的状态检测与诊断实现方法,根据系统获得的声场数据,建立多层次声源评估模型,并利用上述模型对火箭发射时发动机点火后发射台附近实时采集的声场数据进行一致性分析,能够实时监测发动机异常。
-
-
-
-
-
-
-
-
-