-
公开(公告)号:CN113505221A
公开(公告)日:2021-10-15
申请号:CN202010214386.1
申请日:2020-03-24
Applicant: 国家计算机网络与信息安全管理中心 , 北京中科闻歌科技股份有限公司 , 北京中科闻歌智安科技有限公司
Abstract: 本发明公开了一种企业虚假宣传风险识别方法、设备和存储介质。该方法包括:在目标企业对应的多个企业舆情文本中,提取疑似风险文本;在每个疑似风险文本中提取对应种类的风险特征,形成每个疑似风险文本对应的风险特征向量;将多个疑似风险文本分别对应的风险特征向量顺次输入预先训练的风险识别模型,使风险识别模型对每个疑似风险文本进行识别,并将识别为存在虚假宣传风险的疑似风险文本确定为风险文本;根据确定出的所有风险文本的信息,确定目标企业对应的虚假宣传风险强度值;如果虚假宣传风险强度值大于预设的风险阈值,则确定目标企业存在虚假宣传风险。本发明可以避免人工匹配规则的局限性,提升了虚假宣传风险识别的准确性。
-
公开(公告)号:CN112668316A
公开(公告)日:2021-04-16
申请号:CN202011290565.X
申请日:2020-11-17
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院计算技术研究所
IPC: G06F40/258 , G06F40/205 , G06F16/35 , G06N3/04 , G06N3/08
Abstract: 本发明公开了一种word文档关键信息抽取方法,其包括:步骤一、获取源word文档,遍历word文档的段落,对于任一段落,判断段落是否具有模板样式属性,若具有模板样式属性,则进入步骤二,否则进入步骤三;步骤二、根据段落的模板样式属性获取段落信息类别,并与预设的待抽取关键信息类别列表进行匹配,将段落抽取并输入至输出文件一中所属信息类别对应的区域;步骤三、基于预设的神经网络模型识别段落的信息类别,并与预设的待抽取关键信息类别列表进行匹配,将段落抽取并输入所属信息类别对应的区域。本发明利用了word文档中的模板样式属性的信息,从而极大地提高了word文档抽取关键信息地效率。
-
公开(公告)号:CN111861120A
公开(公告)日:2020-10-30
申请号:CN202010556321.5
申请日:2020-06-17
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院计算技术研究所
Abstract: 本申请涉及一种企业关联图谱的构建方法、装置、设备及计算机可读介质。该方法包括:获取目标数据集,目标数据集包括多个目标企业的数据,每条数据包括一个目标企业的关联特征;将多个目标企业中具有相同的关联特征的企业划分到同一个企业组中;为多个目标企业建立图谱节点,并按照关联类型为企业组中的图谱节点构建节点与节点之间的关联边;利用关联系数和关联权重确定关联边的关联强度。本申请实现了企业关联图谱的构建,利用企业关联图谱表示了企业之间存在的各种关联关系及企业之间的关联强度,为企业间风险传播的评估提供了基础。
-
公开(公告)号:CN111861119A
公开(公告)日:2020-10-30
申请号:CN202010555450.2
申请日:2020-06-17
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院计算技术研究所
IPC: G06Q10/06
Abstract: 本申请涉及一种基于企业风险关联图谱的企业风险数据处理方法及装置。该方法包括:获取企业风险关联图谱并确定第一目标节点,企业风险关联图谱用于保存企业之间的风险传播关系,第一目标节点为企业风险关联图谱中的节点,用于表示出现风险问题的风险企业;利用企业风险关联图谱确定与第一目标节点关联的第二目标节点的风险参数,第二目标节点为企业风险关联图谱中的节点,用于表示与风险企业存在关联关系的企业,风险参数用于表示与风险企业存在关联关系的企业受风险企业影响的概率。本申请实现了从企业关联关系的角度分析其他企业受风险企业影响的概率,提供了评估企业之间风险传播的更为准确、形象的方法。
-
公开(公告)号:CN111680225A
公开(公告)日:2020-09-18
申请号:CN202010338132.0
申请日:2020-04-26
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/9536 , G06F16/35 , G06F40/30 , G06F40/289 , G06N3/04
Abstract: 本发明公开了一种基于机器学习的微信消息分析方法,包括:步骤一、构建训练语料库;步骤二、建立词汇向量表;步骤三和步骤四、构建和训练卷积神经网络;步骤五、将待分析的微信消息对应的多个词汇对应的词向量构成的词向量矩阵输入至训练得到的卷积神经网络,输出得到该微信消息对应的所有标签的概率分布情况。本发明具有精准预测微信消息所属的金融分类标签的有益效果。本方法还公开了一种基于机器学习的微信消息分析系统,包括:数据采集组件;训练语料库;文本预处理组件;模型训练组件;源数据分类组件。本系统具有精准预测微信消息所属的金融分类标签的有益效果。
-
公开(公告)号:CN112667872A
公开(公告)日:2021-04-16
申请号:CN202011290564.5
申请日:2020-11-17
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院计算技术研究所
IPC: G06F16/951 , G06F16/9532 , G06F16/25 , G06F9/445 , G16H50/80
Abstract: 本发明公开了新冠肺炎疫情数据的实时采集方法,包括以下步骤:一、建立配置文件,将多个信源网站内实时反映疫情数据的网页的基本信息预置在配置文件中,包括多个字段的名称、各字段的存储路径,各字段的被采纳次数;二、采集网页数据,通过配置文件中待采集字段的存储路径从多个信源网站采集待采集字段当前的数值;三、数据对齐处理,以待采集字段的数据对齐结果为待采集字段的采集数据;步骤四、更新配置文件,将各信源网站中待采集字段的数值与待采集字段的采集数据相同的信源网站中待采集字段的被采纳次数加1。本发明的方法从多个信源网站的实时数据中获取可信度最高的数据作为采集数据,提高了疫情实时数据的准确性。
-
公开(公告)号:CN111914542A
公开(公告)日:2020-11-10
申请号:CN202010437168.4
申请日:2020-05-21
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院计算技术研究所
IPC: G06F40/279 , G06F40/216 , G06Q40/02 , G06Q50/26
Abstract: 本申请实施例提供了疑似非法集资市场主体识别方法、装置、终端及存储介质,涉及金融安全领域。本申请通过从互联网公开数据中获取与市场主体相关联的文本数据;通过预先训练的数据识别模型,从文本数据中识别出非法集资线索数据;将非法集资线索数据输入到预先训练的市场主体抽取模型中,得到疑似非法集资市场主体。本方案可以从互联网公开数据中自动识别出疑似非法集资行为的线索信息,定位疑似非法集资市场主体,从而提高识别非法集资市场主体的效率。
-
公开(公告)号:CN113505221B
公开(公告)日:2024-03-12
申请号:CN202010214386.1
申请日:2020-03-24
Applicant: 国家计算机网络与信息安全管理中心 , 北京中科闻歌科技股份有限公司 , 国科智安(北京)科技有限公司
IPC: G06F16/35 , G06F18/2411 , G06Q30/018
Abstract: 本发明公开了一种企业虚假宣传风险识别方法、设备和存储介质。该方法包括:在目标企业对应的多个企业舆情文本中,提取疑似风险文本;在每个疑似风险文本中提取对应种类的风险特征,形成每个疑似风险文本对应的风险特征向量;将多个疑似风险文本分别对应的风险特征向量顺次输入预先训练的风险识别模型,使风险识别模型对每个疑似风险文本进行识别,并将识别为存在虚假宣传风险的疑似风险文本确定为风险文本;根据确定出的所有风险文本的信息,确定目标企业对应的虚假宣传风险强度值;如果虚假宣传风险强度值大于预设的风险阈值,则确定目标企业存在虚假宣传风险。本发明可以避免人工匹配规则的局限性,提升了虚假宣传风险识别的准确性。
-
公开(公告)号:CN111680225B
公开(公告)日:2023-08-18
申请号:CN202010338132.0
申请日:2020-04-26
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/9536 , G06F16/35 , G06F40/30 , G06F40/289 , G06N3/0464 , G06N3/048 , G06N3/047 , G06N3/082
Abstract: 本发明公开了一种基于机器学习的微信消息分析方法,包括:步骤一、构建训练语料库;步骤二、建立词汇向量表;步骤三和步骤四、构建和训练卷积神经网络;步骤五、将待分析的微信消息对应的多个词汇对应的词向量构成的词向量矩阵输入至训练得到的卷积神经网络,输出得到该微信消息对应的所有标签的概率分布情况。本发明具有精准预测微信消息所属的金融分类标签的有益效果。本方法还公开了一种基于机器学习的微信消息分析系统,包括:数据采集组件;训练语料库;文本预处理组件;模型训练组件;源数据分类组件。本系统具有精准预测微信消息所属的金融分类标签的有益效果。
-
公开(公告)号:CN112667872B
公开(公告)日:2023-04-07
申请号:CN202011290564.5
申请日:2020-11-17
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院计算技术研究所
IPC: G06F16/951 , G06F16/9532 , G06F16/25 , G06F9/445 , G16H50/80
Abstract: 本发明公开了新冠肺炎疫情数据的实时采集方法,包括以下步骤:一、建立配置文件,将多个信源网站内实时反映疫情数据的网页的基本信息预置在配置文件中,包括多个字段的名称、各字段的存储路径,各字段的被采纳次数;二、采集网页数据,通过配置文件中待采集字段的存储路径从多个信源网站采集待采集字段当前的数值;三、数据对齐处理,以待采集字段的数据对齐结果为待采集字段的采集数据;步骤四、更新配置文件,将各信源网站中待采集字段的数值与待采集字段的采集数据相同的信源网站中待采集字段的被采纳次数加1。本发明的方法从多个信源网站的实时数据中获取可信度最高的数据作为采集数据,提高了疫情实时数据的准确性。
-
-
-
-
-
-
-
-
-