-
公开(公告)号:CN111694955A
公开(公告)日:2020-09-22
申请号:CN202010382894.0
申请日:2020-05-08
Applicant: 中国科学院计算技术研究所
Abstract: 本发明提出一种社交平台的早期争议性消息检测方法及系统,包括:收集社交平台中关于预设话题下的所有消息,并根据每一条消息的评论信息为每一条消息的争议性进行标记,提取标记后消息的多维度争议性特征作为训练数据,以该训练数据训练梯度提升树模型,得到争议性消息检测模型;从该社交平台获取待发表的消息作为待检测消息,并将该待检测消息的多维度争议性特征输入至该争议性消息检测模型,得到该待检测消息的争议性消息检测结果。本发明可得到社交平台中待审核发表消息的争议性。
-
公开(公告)号:CN110032733A
公开(公告)日:2019-07-19
申请号:CN201910184862.7
申请日:2019-03-12
Applicant: 中国科学院计算技术研究所
Abstract: 本发明涉及一种针对新闻长文本的谣言检测方法及系统,包括:获取指定新闻平台中大于预设字数的文本作为长文本,提取长文本中段落的关键词,并以该关键词检索社交平台获取社交数据,使用文本相关性算法获得该段落的相关数据;获取标注数据集,标注数据集包括已标注谣言信息的多个社交数据,使用标注数据集训练多个分类模型,并将训练完成的分类模型集合为融合模型,使用融合模型得到相关数据的可信度得分,用以代表段落为非谣言的概率。本发明使用异源检测方法解决了难以对长文直接判别的问题。
-
公开(公告)号:CN111694955B
公开(公告)日:2023-09-12
申请号:CN202010382894.0
申请日:2020-05-08
Applicant: 中国科学院计算技术研究所
Abstract: 本发明提出一种社交平台的早期争议性消息检测方法及系统,包括:收集社交平台中关于预设话题下的所有消息,并根据每一条消息的评论信息为每一条消息的争议性进行标记,提取标记后消息的多维度争议性特征作为训练数据,以该训练数据训练梯度提升树模型,得到争议性消息检测模型;从该社交平台获取待发表的消息作为待检测消息,并将该待检测消息的多维度争议性特征输入至该争议性消息检测模型,得到该待检测消息的争议性消息检测结果。本发明可得到社交平台中待审核发表消息的争议性。
-
公开(公告)号:CN113537027B
公开(公告)日:2023-09-01
申请号:CN202110776853.4
申请日:2021-07-09
Applicant: 中国科学院计算技术研究所
IPC: G06V40/16 , G06V10/40 , G06V10/764 , G06V10/774 , G06N20/00
Abstract: 本发明提出一种基于面部划分的人脸深度伪造检测方法和系统,包括:对训练数据,提取全局人脸特征;根据获取全局人脸特征过程中产生的浅层卷积特征,将该浅层卷积特征根据预设的面部划分方式,划分为多个图像区域,分别将该图像区域输入至局部人脸特征提取模型,得到该人脸图像的多个局部特征;通过注意力模型提取该多个局部特征间的关系特征,并将该关系特征与该全局特征拼接后输入至二分类模型,得到该训练数据的检测结果,根据该结果和该标签构建损失函数,以训练该全局人脸特征提取模型、局部人脸特征提取模型、注意力模型和该二分类模型。
-
公开(公告)号:CN116189313A
公开(公告)日:2023-05-30
申请号:CN202211387389.0
申请日:2022-11-07
Applicant: 中国科学院计算技术研究所
Abstract: 本发明提出一种基于并发策略的深度合成图像视频伪造检测方法和系统,包括:获取由多个操作构成的深伪检测流程,将该深伪检测流程中操作耗时程度大于预设值的操作作为独立操作,并通过为每个独立操作的数据输入,构建对应的输入缓存队列,得到独立检测流程;以多个该独立检测流程并发执行图像的伪造检测任务,且在伪造检测过程中每个独立检测流程的输入缓存队列根据打包数据策略,将队列中的数据打包送入与当前输入缓存队列对应的独立操作;汇总各独立检测流程的输出,得到该图像的伪造检测结果。
-
公开(公告)号:CN112132133A
公开(公告)日:2020-12-25
申请号:CN202010545903.3
申请日:2020-06-16
Applicant: 杭州中科睿鉴科技有限公司 , 中国科学院计算技术研究所数字经济产业研究院
Abstract: 本发明涉及一种标识图像数据增强方法及真伪智能鉴定方法。本发明的目的是提供一种标识图像数据增强方法及真伪智能鉴定方法,解决现有图像分类算法遇到小样本问题时的解决方案。本发明的技术方案是:一种标识图像数据增强方法,其特征在于:获取显示有标识的真图;获取真图中标识的关键特征数据;基于关键特征数据建立伪图数据规则;根据数据规则生成伪图。本发明适用于计算机视觉技术领域。
-
公开(公告)号:CN111553916A
公开(公告)日:2020-08-18
申请号:CN202010388676.8
申请日:2020-05-09
Applicant: 杭州中科睿鉴科技有限公司 , 中国科学院计算技术研究所数字经济产业研究院
Abstract: 本发明涉及一种基于多种特征和卷积神经网络的图像篡改区域检测方法。本发明的目的是提供一种基于多种特征和卷积神经网络的图像篡改区域检测方法。本发明的技术方案是:一种基于多种特征和卷积神经网络的图像篡改区域检测方法,其特征在于:获取待检测图像:对待检测图像进行基于双重压缩痕迹特征的篡改检测;将待检测图像输入具有RGB流和噪声流双流输入的双流卷积篡改检测网络模型进行检测;对待检测图像进行基于图像匹配的复制-粘帖检测;输出检测结果。本发明适用于数字图像取证领域。
-
公开(公告)号:CN113239685B
公开(公告)日:2023-10-31
申请号:CN202110041193.5
申请日:2021-01-13
Applicant: 中国科学院计算技术研究所
IPC: G06F40/30 , G06F40/284 , G06F40/242 , G06F40/216 , G06F16/35 , G06F18/25 , G06F18/241
Abstract: 本发明提出一种基于双重情感的舆情检测方法及系统,基于提出的双重情感特征,能够通过简单的多层感知机模块融合到领域内现有的检测模型中,具有很强的便捷性。在融合了双重情感特征之后,模型的检测准确率、召回率、F1值等指标都能够大幅提高,有效提升舆情检测的性能。
-
公开(公告)号:CN113254864A
公开(公告)日:2021-08-13
申请号:CN202110478862.5
申请日:2021-04-29
Applicant: 中国科学院计算技术研究所数字经济产业研究院 , 杭州中科睿鉴科技有限公司
Abstract: 本发明涉及一种基于节点特征和回复路径的动态子图生成方法、争议性检测方法,S1、基于“帖子‑评论”图G构建路径矩阵P和路径长度矩阵S,其中路径矩阵P记录图G中每个节点到终端节点的所有路径,终端节点包括图G中的帖子节点和没有回复的评论节点;路径长度矩阵S记录路径矩阵中每条路径的长度;S2、基于路径矩阵P和路径长度矩阵S计算得到路径拉普拉斯矩阵L;S3、基于路径拉普拉斯矩阵L以及图G中节点本身的内容特征,计算获得当前节点感知路径信息的表达;S4、基于当前节点与相应路径上所有节点的相似性,保留每条路径上最重要的部分节点,所有路径上的重要节点构成当前节点对应的子图,该子图中的节点为与当前节点相关的局部讨论。
-
公开(公告)号:CN112148875A
公开(公告)日:2020-12-29
申请号:CN202010768194.5
申请日:2020-08-03
Applicant: 杭州中科睿鉴科技有限公司 , 中国科学院计算技术研究所数字经济产业研究院
Abstract: 本发明涉及一种基于图卷积神经网络整合内容和结构信息的争议性检测方法。本发明的目的是提供一种基于图卷积神经网络整合内容和结构信息的争议性检测方法。本发明的技术方案是一种基于图卷积神经网络整合内容和结构信息的争议性检测方法,其特征在于:建立“话题‑帖子‑评论”图,图中评论连接到该评论回复的评论/帖子上,帖子连接到该帖子属于的话题上;根据“话题‑帖子‑评论”图中话题节点、帖子节点和评论节点的文本获取相应节点的初始表达向量;使用图卷积神经网络学习“话题‑帖子‑评论”图中节点的表达;根据帖子节点和相应评论节点的平均表达进行争议性分类。本发明适用于社交媒体平台争议性检测领域。
-
-
-
-
-
-
-
-
-