芯片接口及其测试方法
    11.
    发明公开

    公开(公告)号:CN117827560A

    公开(公告)日:2024-04-05

    申请号:CN202311700750.5

    申请日:2023-12-12

    Abstract: 提供一种芯片接口及其测试方法,该芯片接口包括:输入端口,用于接收来自外部测试路径的伪随机二进制PRBS测试序列;测试序列对比模块,用于将所述输入端口接收的所述PRBS测试序列与所述测试序列对比模块中的标准序列进行对比,并输出比较结果;测试序列生成模块,用于生成PRBS测试序列;输出端口,用于将所述测试序列生成模块生成的PRBS测试序列输出至外部测试路径。

    一种多视觉任务加速器和多视觉任务处理的控制方法

    公开(公告)号:CN116089080A

    公开(公告)日:2023-05-09

    申请号:CN202310013486.1

    申请日:2023-01-05

    Abstract: 本发明提供了一种多视觉任务加速器和多视觉任务处理的控制方法,所述视觉任务是指利用卷积神经网络对输入的图像进行处理的任务,每个图像卷积神经网络包括至少一个卷积层,该加速器包括:用于执行卷积层的卷积运算的计算阵列;用于响应于一个或者多个视觉任务的加速计算请求,控制计算阵列执行一个视觉任务对应的卷积运算或者在计算阵列执行单个视觉任务对应的卷积运算存在空闲计算资源时将计算阵列分为至少两个区域以同时执行多个视觉任务中的至少两个视觉任务对应的卷积运算的控制器。

    一种双调度模式的神经网络加速器

    公开(公告)号:CN115423083A

    公开(公告)日:2022-12-02

    申请号:CN202211126536.9

    申请日:2022-09-16

    Abstract: 一种双调度模式的神经网络加速器,所述加速器包括矩阵运算阵列、池化单元、激活单元,所述加速器还包括阵列切换模块、双调度缓存模块、辅助运算模块,其中:所述阵列切换模块用于控制矩阵运算阵列中子运算单元的之间的连接方式以实现矩阵运算阵列的阵列模式切换、控制双调度缓存模块缓存数据和传输数据的方式、以及控制辅助运算模块执行辅助运算;所述双调度缓存模块用于按照加速器对应的调度模式缓存从外部存储介质获取待处理的神经网络数据以及按照对应的调度模式将数据传输给矩阵运算阵列;所述辅助运算模块用于基于阵列切换控制模块的控制对矩阵运算阵列在串行阵列模式下执行运算后的结果进行加法计算。

    计算装置、处理器、电子设备和计算方法

    公开(公告)号:CN112132273B

    公开(公告)日:2022-11-29

    申请号:CN202010999529.4

    申请日:2020-09-22

    Abstract: 本发明提供了一种计算装置、处理器、电子设备和计算方法,其中,计算装置包括:逻辑运算单元、匹配单元和存储单元;所述匹配单元将接收的三值形式的计算元素匹配为二值形式的计算元素输出给所述逻辑运算单元;所述逻辑运算单元包括与或非门运算单元,所述与或非门运算单元对接收的二值形式的计算元素执行与或非逻辑运算,获得二值形式的计算结果,其中,所述计算元素包括特征值和对应的权重值;所述存储单元将完成运算的所述二值形式的计算结果转换为三值形式的计算结果并存储。本发明可以实现同时处理二值神经网络和三值神经网路。

    神经网络中的权重存储方法以及基于该方法的处理器

    公开(公告)号:CN108510058B

    公开(公告)日:2021-07-20

    申请号:CN201810166950.X

    申请日:2018-02-28

    Abstract: 本发明提供一种神经网络中的权重存储方法以及基于该方法的神经网络存储器。该权重存储方法包括:将原二维权重卷积核构建为三维空间矩阵;查找所述三维空间矩阵中的有效权重并建立有效权重索引,其中,所述有效权重是非零权重,所述有效权重索引用于标记所述有效权重在所述三维空间矩阵的位置;存储所述有效权重以及所述有效权重索引。根据本发明的权重数据存储方法和卷积计算方法能够节省存储空间并提高计算效率。

    用于神经网络的处理系统和处理方法

    公开(公告)号:CN107818367B

    公开(公告)日:2020-12-29

    申请号:CN201711041164.9

    申请日:2017-10-30

    Abstract: 本发明提供了一种神经网络处理系统。该处理系统包括:计算阵列,用于执行神经元和权值的乘法和累加操作;控制单元,用于控制所述计算阵列的数据传递和加载,其中,所述计算阵列包括:至少一个列处理单元,由多个乘法单元构成,并用于执行神经元和权值的乘法运算,以输出乘积结果;至少一个列累加单元,与所述列处理单元相连,并用于对所述列处理单元的多个乘积结果进行累加;至少一个列暂存单元,与所述列累加单元相连,并用于存储所述列累加单元的计算结果。利用本发明的处理系统,在计算过程中能够实现神经元循环使用,从而提高了计算效率和资源利用率。

    一种兼容型神经网络加速器及数据处理方法

    公开(公告)号:CN108734270B

    公开(公告)日:2020-11-10

    申请号:CN201810244109.8

    申请日:2018-03-23

    Abstract: 本发明涉及一种兼容型神经网络加速器,包括存储单元,用于存储神经元数据、权值数据及控制指令并输出;矩阵运算单元,用于根据所述控制指令从所述存储单元接收数据并针对所述接收的数据执行矩阵运算并输出运算结果;模式运算单元,包括多个功能模块,所述功能模块可用于从所述矩阵运算单元和/所述激活单元和/或所述存储单元或接收数据,并根据所述控制指令针对所述接收的数据执行与网络对应的特定运算并输出运算结果;激活单元,用于从所述模式运算单元和/或所述存储单元接收数据,并针对所述接收的数据执行激活操作并输出激活结果。

    一种面向神经网络的对数量化装置及方法

    公开(公告)号:CN110084362A

    公开(公告)日:2019-08-02

    申请号:CN201910175295.9

    申请日:2019-03-08

    Abstract: 本发明提供一种面向神经网络的对数量化装置,及其对应的对数量化机制。该装置通过利用高位数值提取模块与对数量化的查找表模块,实现输入数据的快速且精确对数量化,实现基于对数量化的神经网络输入数据的对数量化操作,可为神经网络对数化参数的运算提供对数输入数据,为进一步简化卷积运算做准备。

    面向固定输出范式Winograd卷积的神经网络处理器

    公开(公告)号:CN109359730A

    公开(公告)日:2019-02-19

    申请号:CN201811122004.1

    申请日:2018-09-26

    Abstract: 本发明提供一种面向固定输出范式Winograd卷积的运算单元和基于该运算单元的神经网络处理器。该运算单元包括取反单元、累加单元和第一选通器,取反单元的输出端连接至累加单元的输入端,第一选通器用于控制将待计算的输入数据传递至取反单元的输入端或传递至累加单元的输入端,累加单元分时接收待计算的输入数据、取反单元的输出值或累加单元的输出值以利用加减运算实现Winograd卷积中的矩阵转换操作。利用本发明运算单元用于神经网络的卷积运算,能够提高计算效率并降低运行功耗。

Patent Agency Ranking