-
公开(公告)号:CN106945307A
公开(公告)日:2017-07-14
申请号:CN201710214268.9
申请日:2017-04-01
Applicant: 中南大学
CPC classification number: B29C70/44 , B29C35/0805 , B29C70/54 , B29C2035/0855
Abstract: 本发明的一种对吸波材料进行复合加热的方法,在热压罐、设置在热压罐内的微波腔体以及向微波腔体内发出微波的微波发生器的复合加热装置中完成,微波腔体包括多孔壁板用于将微波发生器产生的微波控制在微波腔体内且同时不会阻止微波腔体内外的气体交换,吸波材料设置于微波腔体内,且对吸波材料构件加热前先在其外表面的部分面积处设置一层强吸波材料;加热方法包括使用热压罐加热,使得吸波材料构件内部的温度升高至中间温度;然后停止使用热压罐对吸波材料构件进行加热或将热压罐的温控设置为保温状态,打开微波发生器使得吸波材料构件内部的温度升高至目标温度。本发明保证制件的成型过程整体温度场均匀,成型的精度高和性能好。
-
公开(公告)号:CN110068429B
公开(公告)日:2020-03-13
申请号:CN201910377952.8
申请日:2019-05-08
Applicant: 中南大学
IPC: G01M3/20
Abstract: 本发明公开了一种航天复合材料构件在低温环境下的渗漏性测试方法,将真空泵和氦质谱检漏仪接入真空管路,以排除空气中的氦气成分对测试结果的影响,并保证测试过程中氦质谱检漏仪可采集到渗漏气体;真空泵对测试罐和密封罐的空间抽真空直至氦质谱检漏仪示数为零,向密封罐中注入液氦,通过观察液位计示数变化;观察并记录氦质谱检漏仪示数变化,得到复合材料在低温环境下的渗漏性能。本发明的渗漏性测试方法能够高度还原大型航天复合材料构件服役时所处低温环境,实现对复合材料构件进行低温渗漏性检测,为大型航天复合材料构件的高品质制造和耐极端环境复合材料体系的研发提供了必要的检测方法。
-
公开(公告)号:CN110362950A
公开(公告)日:2019-10-22
申请号:CN201910670767.8
申请日:2019-07-24
Applicant: 中南大学
IPC: G06F17/50
Abstract: 本发明提供了一种热压罐内材料成型强迫对流传热数值模拟方法,先通过定常计算得到热压罐内流场与压力场,并将流场与压力场视为不变场,再基于得到的流场与压力场结合能量方程进行温度场的非定常计算,其中,在用能量方程对温度场进行非定常计算时,将能量方程中原本作为常数的气体密度用与时间相关的函数代替,所述用于代替常数气体密度的与时间相关的气体密度函数由罐内气体压力及温度随时间变化的曲线结合理想气体状态方程转化得到。通过此函数可将罐内压力随时间变化情况转化为密度随时间的变化,从而可以降低因忽略压力变化而导致的误差,提高温度场模拟的准确性。
-
公开(公告)号:CN109367063A
公开(公告)日:2019-02-22
申请号:CN201811512587.9
申请日:2018-12-11
Applicant: 中南大学
Abstract: 本发明提供一种包含耐压微波腔的复合材料固化装置,所述装置包括能密闭设置的微波腔体、微波发生器、振动气锤、物料托板、微波腔体增压部件和抽真空部件;所述微波发生器向微波腔体内发送微波用于为所述复合材料供热,所述物料托板设置在微波腔体内,物料托板上用于直接或间接放置复合材料待处理制件;所述振动气锤为能向所述物料托板和复合材料提供5000Hz以下振动频率的振动以及能提供2g以上竖直方向的振动加速度的振动的振动气锤;所述微波腔体增压部件包括至少一根与微波腔体连接而用于向微波腔体中输入压缩空气的微波腔体增压压缩气管。本发明所述装置可以使得复合材料预浸料在大气压或0.1MPa内的表压下固化得到性能优良的制件。
-
公开(公告)号:CN109435277B
公开(公告)日:2024-02-20
申请号:CN201811497446.4
申请日:2018-12-07
Applicant: 中南大学
Abstract: 本发明提供一种树脂基复合材料的加热固化装置,包括电热件、振动台、微波发生器、微波腔和抽真空部件,所述振动台设置在微波腔内;振动台上用于放置复合材料,所述微波发生器向微波腔内发送微波用于为所述复合材料供热,所述电热件也用于为所述复合材料供热;所述振动台为能向所述复合材料提供5000Hz以下振动频率的振动以及能提供2g以上振动加速度的振动的振动台;所述微波发生器使得装置对复合材料进行整体加热,或者对复合材料进行定点或定向加热,所述电热件使得装置对复合材料进行整体加热,所述振动台为复合材料的固化提供2g以上的竖直方向的振动加速度。本发明所述装置可以使得复合材料在大气压下固化得到性能合格的制件。
-
公开(公告)号:CN110362950B
公开(公告)日:2021-04-27
申请号:CN201910670767.8
申请日:2019-07-24
Applicant: 中南大学
IPC: G06F30/28 , G06F111/10 , G06F113/08 , G06F119/08 , G06F119/14
Abstract: 本发明提供了一种热压罐内材料成型强迫对流传热数值模拟方法,先通过定常计算得到热压罐内流场与压力场,并将流场与压力场视为不变场,再基于得到的流场与压力场结合能量方程进行温度场的非定常计算,其中,在用能量方程对温度场进行非定常计算时,将能量方程中原本作为常数的气体密度用与时间相关的函数代替,所述用于代替常数气体密度的与时间相关的气体密度函数由罐内气体压力及温度随时间变化的曲线结合理想气体状态方程转化得到。通过此函数可将罐内压力随时间变化情况转化为密度随时间的变化,从而可以降低因忽略压力变化而导致的误差,提高温度场模拟的准确性。
-
公开(公告)号:CN112477361A
公开(公告)日:2021-03-12
申请号:CN202011344212.3
申请日:2020-11-26
Applicant: 中南大学
Abstract: 本发明公开了一种制备得到低层间残余应力的纤维金属层板的方法,其中固化工艺包括三个阶段:一、先由室温升温至纤维金属层板的层间界面开始形成时的温度,接着降温;二、再升温至纤维金属层板的层间界面完全形成时的温度,并继续保温0.5小时以上,金属层与纤维增强复合材料层固化结合为一个纤维金属层板整件;三、将纤维金属层板整件先降温至40~80℃,再自然降至室温,即得纤维金属层板。本发明通观察分析光纤光栅传感器数据,得到界面开始形成与完全形成的相关温度信息,并基于此结果调整纤维金属层板的固化工艺曲线。本发明通过降低界面完全形成时的板内温度以降低成形温差,从而达到降低残余应力的目的,具有成本较低,准确高等优点。
-
公开(公告)号:CN111216377A
公开(公告)日:2020-06-02
申请号:CN202010050176.3
申请日:2020-01-17
Applicant: 中南大学
Abstract: 本发明公开了一种复合材料结构件的成型方法,包括密封制袋、振动处理、微波固化和结构件整体脱模;振动处理是将完成封袋的材料固定在振动支撑座上,并与物料平台同步振动;微波固化利用模具支撑架和支撑轴对硅橡胶模具进行支撑,并用微波对预成型体各表面均匀微波辐射成型;最后利用酸碱腐蚀配合人工拆解将硅橡胶模具从成型后的结构件中取出。本发明的成型方法通过振动处理结合微波固化复合材料,可实现复合材料结构件的快速、低成本、高性能成型;本发明突破热压罐成型工艺对制件尺寸的限制,降低制造成本;成型后的结构件力学性能优良、孔隙率低,其性能与质量可达到与热压罐固化后相同的水平。
-
公开(公告)号:CN109367065A
公开(公告)日:2019-02-22
申请号:CN201811513753.7
申请日:2018-12-11
Applicant: 中南大学
Abstract: 本发明提供一种包含微波加热的复合材料固化装置,所述装置包括截面呈正多边形的棱柱形微波腔体、微波发生器、振动气锤、物料托板、中央回转轴和抽真空部件;所述微波发生器向微波腔体内发送微波用于为所述复合材料供热,所述物料托板设置在微波腔体内,物料托板上用于直接或间接放置复合材料待处理制件;所述振动气锤为能向所述物料托板和复合材料提供5000Hz以下振动频率的振动以及能提供2g以上竖直方向的振动加速度的振动的振动气锤;所述中央回转轴设置在微波腔体内的轴向中心位置,用于截面为中心对称图形的回转体复合材料制件设置其上。本发明所述装置可以使得复合材料预浸料在大气压下固化得到性能优良的制件。
-
公开(公告)号:CN111113953B
公开(公告)日:2024-05-24
申请号:CN202010050166.X
申请日:2020-01-17
Applicant: 中南大学
Abstract: 本发明公开了一种复合材料结构件的成型模具组,其包括振动处理用模具、微波固化用模具和硅橡胶模具;振动处理用模具包括紧固装置、真空袋和振动支撑座,微波固化用模具包括模具支撑架和支撑轴,模具支撑架包括两个单元架体,支撑轴的两端分别与两个单元架体可转动连接;硅橡胶模具内设有贯通的圆形通孔。本发明的成型模具组通过振动处理用模具、微波固化用模具和硅橡胶模具之间的配合,可以同时实现近似封闭形面复合材料结构件精确成型与易脱模的要求,该成型模具组结构设置合理、制造简单;成型后的结构件力学性能优良、孔隙率低,其性能与质量可达到与热压罐固化后相同的水平。
-
-
-
-
-
-
-
-
-