-
公开(公告)号:CN107392309A
公开(公告)日:2017-11-24
申请号:CN201710810528.9
申请日:2017-09-11
Applicant: 东南大学—无锡集成电路技术研究所 , 东南大学
Abstract: 本发明公开了一种基于FPGA的通用定点数神经网络卷积加速器硬件结构,包括:通用AXI4高速总线接口,通用GPIO接口;提供通用的存储器硬件并且支持高并行的读写操作;通用卷积器可对定点数精度配置,可配置卷积操作大小,在完成数据存储后可配合高并行的读写进行高并行的卷积运算;通用读写控制单元,包含对ram、rom、Fifo的读写控制逻辑以及地址产生逻辑;通用状态控制器,针对卷积层和读写、计算过程做出相应的单元运行反应,控制整体的计算流程;通用卷积结果缓存器,采用对卷积结果分段式累加的方法,高速并行对处理结果进行缓存和向总线发送。本发明在基于Yolo算法的人脸检测和基于CNN的人脸识别应用中得到验证,体现出极高的运行速度和较高的数据精度。
-
公开(公告)号:CN110569760B
公开(公告)日:2023-05-26
申请号:CN201910794798.4
申请日:2019-08-27
Applicant: 东南大学 , 东南大学—无锡集成电路技术研究所
Abstract: 本发明涉及一种基于近红外和远程光电体积描记术的活体检测方法,属于计算、推算、计数的技术领域。该方法:定位待检测对象的面部区域进行人脸识别;对通过人脸识别的对象获取面部的近红外光图像,通过检测近红外光图像获取红外光图像为翻拍自屏幕介质的评分;获取通过屏幕翻拍检测的对象的面部图像序列,利用远程光电体积描记术对待测图像序列进行生命体征信号的提取,辨别待检测对象是否为活体人脸。本发明提高了活体检测的鲁棒性,具备更强的分类和学习能力,能较好地应对三维面具、视频、照片翻拍等表示攻击,区分结果准确率较高。叠加最短周期信号提取生命特征信号的改进型远程光电体积描记术则无需先验知识,能够适应实际使用场景的需求。
-
公开(公告)号:CN108806243A
公开(公告)日:2018-11-13
申请号:CN201810371782.8
申请日:2018-04-24
Applicant: 东南大学 , 东南大学—无锡集成电路技术研究所
Abstract: 本发明公开了一种基于Zynq‑7000的交通流量信息采集终端,属于交通控制系统信号装置的技术领域。该终端以Zynq‑7000芯片为载体,搭建了包含视频图像采集传感器、外部存储器模块、HDMI显示器的架构,使用AXI4总线进行PS模块和PL模块内部互联,设计了加速卷积神经网络计算的IP核,采用MCU驱动AXI4‑VDMA IP核和AXI4‑DMA IP核的通信架构实现了PS模块和PL模块的实时数据交互,将视频图像采集、存储、目标检测、流量统计、显示输出等功能集成单芯片上,集成度高,高速度和低延迟的数字图像处理和数据传输能够满足交通流量统计的实时性要求。
-
公开(公告)号:CN107766812A
公开(公告)日:2018-03-06
申请号:CN201710945484.0
申请日:2017-10-12
Applicant: 东南大学—无锡集成电路技术研究所 , 东南大学
IPC: G06K9/00
CPC classification number: G06K9/00228 , G06K9/00288 , G06K9/00986
Abstract: 本发明公开了一种基于MiZ702N的实时人脸检测识别系统,包括图像传感器、MiZ702N开发板、VGA显示器;MiZ702N开发板包括视频输入模块、存储器、CPU、神经网络加速器、视频输出模块;图像传感器采集视频信息并将信息发送到视频输入模块,之后将单帧图像存储到存储器中;CPU从存储器获取图像信息,进行图像预处理后将预处理后的图像存储到存储器中;神经网络加速器从存储器中获取预处理后的图像进行人脸检测运算和人脸识别运算,然后将运算结果返回存储器;CPU根据运算结果处理图像;视频输出模块从存储器中获取经CPU处理后的图像,最后输出数据到VGA显示器。本发明具有内部总线数据传输速度快,神经网络并行度高,实时准确检测识别人脸的优点。
-
公开(公告)号:CN110046565B
公开(公告)日:2023-07-14
申请号:CN201910279211.6
申请日:2019-04-09
Applicant: 东南大学 , 东南大学—无锡集成电路技术研究所
IPC: G06V40/16 , G06V10/26 , G06V10/34 , G06V10/774 , G06V10/764
Abstract: 本发明公开一种基于Adaboost算法的人脸检测方法,步骤是:对输入的视频或图像进行预处理,包括进行灰度归一化和滤波去噪;将彩色图像的RGB空间转换为YCbCr空间,然后根据肤色色度的范围,对图像进行肤色分割;对肤色分割后的图像进行形态学处理;采用Canny边缘检测算法对形态学处理后的图像进行边缘检测;利用RHT检测图像中的椭圆,将检测出似人脸的椭圆区域抠出,作为人脸候选区域;利用Adaboost算法训练级联分类器,利用训练好的级联分类器对人脸候选区域进行人脸检测,输出人脸位置。此种人脸检测方法能够在保证检测率的同时,降低计算量,提高检测速度。
-
公开(公告)号:CN109934339B
公开(公告)日:2023-05-16
申请号:CN201910168042.9
申请日:2019-03-06
Applicant: 东南大学 , 东南大学—无锡集成电路技术研究所
IPC: G06N3/063 , G06N3/0464
Abstract: 本发明公开一种基于一维脉动阵列的通用卷积神经网络加速器,AXI4总线接口用于实现模式配置指令的载入以及待计算数据的读取与结果数据的批量发送;模式配置器通过模式配置指令配置各个功能模块为对应工作类型;数据调度模块可并发进行待计算数据缓存、计算数据读取、卷积结果缓存以及卷积结果处理与输出任务;卷积计算模块采用一维脉动阵列的模式进行卷积计算;待计算数据缓存区、卷积结果缓存区、输出结果缓冲FIFO,用于缓存对应数据;结果处理模块进行卷积神经网络中常见的结果处理操作。此种加速器能够兼容卷积神经网络中的不同计算类型并进行高并行度计算来有效加速,同时只需要较低的片外访存带宽需求以及少量的片上存储资源。
-
公开(公告)号:CN107679469B
公开(公告)日:2021-03-30
申请号:CN201710863757.7
申请日:2017-09-22
Applicant: 东南大学—无锡集成电路技术研究所 , 东南大学
Abstract: 本发明公开了一种基于深度学习的非极大值抑制方法,针对深度学习目标检测算法预测窗口的特点,定义了一种新的置信度指数。提出了改进的窗口筛选准则和依据置信度指数对窗口参数进行加权平均的方法。相比于传统方法有着更高的定位精度,更高的召回率以及更佳的鲁棒性。本方法首先找到每个目标对应的置信度最高的窗口为主窗口,然后在每个窗口附近找到置信度大于阈值且与主窗口的交叠率大于阈值的一批窗口作为子窗口。根据子窗口的位置参数和置信度调整主窗口的位置参数,得到新的窗口。多种情况下的实验表明,在相同的目标检测算法下,本方法得到的窗口更接近于真实窗口。
-
公开(公告)号:CN108806243B
公开(公告)日:2020-09-29
申请号:CN201810371782.8
申请日:2018-04-24
Applicant: 东南大学 , 东南大学—无锡集成电路技术研究所
Abstract: 本发明公开了一种基于Zynq‑7000的交通流量信息采集终端,属于交通控制系统信号装置的技术领域。该终端以Zynq‑7000芯片为载体,搭建了包含视频图像采集传感器、外部存储器模块、HDMI显示器的架构,使用AXI4总线进行PS模块和PL模块内部互联,设计了加速卷积神经网络计算的IP核,采用MCU驱动AXI4‑VDMA IP核和AXI4‑DMA IP核的通信架构实现了PS模块和PL模块的实时数据交互,将视频图像采集、存储、目标检测、流量统计、显示输出等功能集成单芯片上,集成度高,高速度和低延迟的数字图像处理和数据传输能够满足交通流量统计的实时性要求。
-
公开(公告)号:CN109086879B
公开(公告)日:2020-06-16
申请号:CN201810729915.4
申请日:2018-07-05
Applicant: 东南大学 , 东南大学—无锡集成电路技术研究所
Abstract: 本发明公开一种基于FPGA的稠密连接神经网络的实现方法,步骤是:将整个卷积神经网络划分为多个稠密连接块;利用FPGA上的资源设计卷积运算单元,进而设计FPGA端卷积运算模块;设计神经网络整体的数据收发逻辑,包括七个部分:Input Feature Map、Send Buffer、卷积运算模块、Receive Buffer、Output Feature Map、Dense Block Buffer、Max Buffer;根据稠密连接神经网络各层输入输出数据量的大小,设计Input Feature Map、Output Feature Map、Dense Block Buffer所需的存储区域大小,根据Block大小和卷积运算单元的并行度设计Send Buffer、Receive Buffer所需存储区域的大小;根据稠密连接神经网络各层的特点设计其数据收发逻辑。此种方法可在保证算法准确度的前提下降低网络各层宽度,减少参数数量,提高数据传输效率,提升神经网络的运行速度。
-
公开(公告)号:CN110569760A
公开(公告)日:2019-12-13
申请号:CN201910794798.4
申请日:2019-08-27
Applicant: 东南大学 , 东南大学—无锡集成电路技术研究所
IPC: G06K9/00
Abstract: 本发明涉及一种基于近红外和远程光电体积描记术的活体检测方法,属于计算、推算、计数的技术领域。该方法:定位待检测对象的面部区域进行人脸识别;对通过人脸识别的对象获取面部的近红外光图像,通过检测近红外光图像获取红外光图像为翻拍自屏幕介质的评分;获取通过屏幕翻拍检测的对象的面部图像序列,利用远程光电体积描记术对待测图像序列进行生命体征信号的提取,辨别待检测对象是否为活体人脸。本发明提高了活体检测的鲁棒性,具备更强的分类和学习能力,能较好地应对三维面具、视频、照片翻拍等表示攻击,区分结果准确率较高。叠加最短周期信号提取生命特征信号的改进型远程光电体积描记术则无需先验知识,能够适应实际使用场景的需求。
-
-
-
-
-
-
-
-
-