一种基于温度预测的激光熔覆薄壁件精确成形的控制方法

    公开(公告)号:CN108907192B

    公开(公告)日:2020-09-08

    申请号:CN201810934547.7

    申请日:2018-08-16

    Applicant: 东北大学

    Abstract: 本发明公开了一种基于温度预测的激光熔覆薄壁件精确成形的控制方法,涉及激光熔覆成形领域,本发明包括三个步骤,步骤1:通过响应曲面法建立送粉速度、扫描速度、激光功率和基板温度对单道熔覆层的熔宽、熔高和宽高比参数影响的回归模型;步骤2:建立多层熔覆时熔覆温度与熔覆层数关系的理论预测模型;步骤3:结合回归模型,以目标熔宽、熔高为补偿目标,对实际成形尺寸进行补偿,确定合适的功率调整曲线。本发明使熔覆过程中,薄壁件厚度稳定,高度平稳增加,符合预设编程的情况,到最后得到熔覆质量较高的薄壁件。

    零件加工中基于激光熔覆技术的变参数路径扫描算法

    公开(公告)号:CN108441858A

    公开(公告)日:2018-08-24

    申请号:CN201810576312.5

    申请日:2018-06-05

    Applicant: 东北大学

    Abstract: 本发明提供一种零件加工中基于激光熔覆技术的变参数路径扫描方法,涉及激光熔覆成形技术领域。包括以下步骤:在加工路径选取分割点并将其编号;根据设备的加工能力确定曲率阈值,针对不同的曲率范围采用相应的扫描速度和送粉量;计算分割点的曲率,并与曲率阈值比较,记录高于曲率阈值的点;将相邻记录点编为一组,将每一组两个端点或将两个端点向外额外取一点作为低速扫描路径的起点和终点;对于不同的扫描路径采用相应的扫描速度和送粉量进行加工;完成加工。本发明提供的基于激光熔覆技术,根据设备的加工能力以及扫描路径的规划情况,通过改变工艺参数(主要是扫描速度和送粉量),以达到同时保证加工质量和加工效率的目的。

    一种智能电弧离子源
    14.
    发明公开

    公开(公告)号:CN107385397A

    公开(公告)日:2017-11-24

    申请号:CN201710605424.4

    申请日:2017-07-24

    CPC classification number: C23C14/325

    Abstract: 本发明涉及一种智能电弧离子源,包括电磁线圈模块、靶材、水冷模块和永磁体模块。水冷模块包括铜阴极体、阴极体盖和通水螺纹杆,铜阴极体设有水冷通道,阴极体盖与铜阴极体固定连接,通水螺纹杆为中空的管体,其穿过阴极体盖与水冷通道相连通。阴极体盖通过连接件与电磁线圈模块连接,靶材固定在铜阴极体上,永磁体模块固定在通水螺纹杆上。本发明的电弧离子源通过水道冷却的形式代替传统的大平面冷却,解决了冷却水滞留的问题,冷却较为均匀。从中心位置开始对靶材进行冷却,能有效的扼制靶面最高温处热量的累积,降低靶面温度,解决大颗粒污染,提高膜层质量。同时采用磁场控制弧斑的方式,防止弧斑随机运动在靶面造成热量累积。

    基于薄壁件的铣削颤振稳定性预测的并行频域方法

    公开(公告)号:CN106802630A

    公开(公告)日:2017-06-06

    申请号:CN201710150891.2

    申请日:2017-03-14

    Applicant: 东北大学

    CPC classification number: G05B19/4086 B23Q17/12 G05B2219/35356

    Abstract: 本发明公开了一种基于薄壁件的铣削颤振稳定性预测的并行频域方法,具有如下步骤:获取刀具的模态参数与薄壁件的模态参数;建立传递函数;建立薄壁件铣削过程在频域上的运动微分方程;得出不同铣刀主轴转速下的薄壁件铣削的颤振稳定性临界轴向切深;绘制颤振稳定性叶瓣图和三维颤振稳定性叶瓣图。本发明考虑了铣削过程在一个刀齿周期内的时变性,在整个加工过程中,薄壁件的各阶固有频率、刚度、阻尼比的时变性,刀具与薄壁件的模态,因此,本发明能更加准确、真实地预测薄壁件铣削的颤振;由于结合了并行计算理论,本发明的计算时间随着线程数的增加而成倍缩短,因此,本发明具有高效性。

Patent Agency Ranking