-
公开(公告)号:CN118751258A
公开(公告)日:2024-10-11
申请号:CN202410839571.8
申请日:2024-06-26
Applicant: 三峡大学
Abstract: 本发明公开一种ZnIn2S4/Co2Mo3O8异质结光催化剂的制备方法及其应用,制备方法包括以下步骤:(1)Co2Mo3O8纳米颗粒的制备;(2)ZnIn2S4/Co2Mo3O8异质结光催化剂的制备。催化剂用于光催化产氢反应,催化剂具有强的界面化学键Co‑S和Mo‑S键,可明显增强可见光吸收,界面化学键有助于载载流子的分离,能够明显提高ZnIn2S4的光催化产氢活性。同时,该催化剂制备方法简单、反应条件温和、所得产物的分散性好,是一种新型高效的光催化产氢材料。
-
公开(公告)号:CN114849692A
公开(公告)日:2022-08-05
申请号:CN202210390958.0
申请日:2022-04-14
Applicant: 三峡大学
Abstract: 本发明公开了一种TiO2‑C‑MoO2纳米复合材料的制备方法及应用,属于纳米材料制备领域。本发明采用一步高温煅烧工艺,将P25,有机碳源及无机Mo盐按照比例混合均匀,通过调整三者的比例,在高温条件下进行热解反应得到TiO2‑C‑MoO2纳米复合材料,然后将其用于光催化产氢及污水治理领域。本发明采用一步合成法制备TiO2‑C‑MoO2纳米复合材料,工艺简单、经济环保,适用于批量生产。同时,制备的TiO2‑C‑MoO2纳米复合材料具有较好的分散性,可以极大的改善P25的光催化活性,具有很好的应用前景,利于广泛推广应用。
-
公开(公告)号:CN114700096A
公开(公告)日:2022-07-05
申请号:CN202210390801.8
申请日:2022-04-14
Applicant: 三峡大学
Abstract: 本发明公开了一种Mo@Mo2C纳米复合材料的合成方法,属于纳米材料制备领域。本发明采用一步合成法,将无机Mo盐及有机碳源球磨混合,通过调节两者的比例,在特定的梯度下高温热解还原得到Mo@Mo2C复合材料。本发明采用一步合成法制备Mo@Mo2C复合材料,比现有的水热法及高温熔炼法工艺简单、经济环保,适用于批量生产。同时,制备的Mo@Mo2C复合材料具有较好的分散性及较大的比表面积,在催化领域具有很好的应用前景。
-
公开(公告)号:CN109908921B
公开(公告)日:2022-02-01
申请号:CN201910181881.4
申请日:2019-03-11
Applicant: 三峡大学
IPC: B01J27/051 , B01J35/08 , B01J35/10 , C25B1/04 , C25B11/02 , C25B11/04 , B01J20/10 , B01J20/28 , B01J20/30 , C02F1/28 , C02F101/30
Abstract: 本发明公开了MoS2/NiO空心微球的制备方法及其应用,采用前驱体煅烧法制备出NiO超薄纳米片,然后在MoS2制备过程中加入NiO超薄纳米片与MoS2纳米球一起进行组装,形成MoS2/NiO空心微球。该方法无需模板剂及表面活性剂,工艺简单,产率高,易于工业化生产;空心结构具有较大的比表面积、丰富的孔道结构及活性位点,具有较高的催化活性;微球结构可以通过沉淀法进行分离,循环再利用,回收工艺简单;该复合微球中MoS2及NiO均为无定形结构,具有较多的缺陷,进一步提高其催化性能;该法制备的MoS2/NiO空心微球结构具有良好的稳定性和可重复循环性能;得到的MoS2/NiO空心微球结构在污水处理、甲醇氧化、电催化等方面具有良好的应用前景。
-
公开(公告)号:CN109650450B
公开(公告)日:2021-03-09
申请号:CN201910085058.3
申请日:2019-01-18
Applicant: 三峡大学
IPC: C01G39/06 , B01J20/02 , B01J20/30 , B01J27/051
Abstract: 本发明提供了一种表面多孔结构的大尺寸中空MoS2微球及其制备方法和应用。本发明先采用水热法制备大尺寸的Cu‑Fe2O3微球,然后以该微球为模板通过水热法在其表面垂直生长MoS2层状纳米片,最后将得到的复合材料通过腐蚀液刻蚀的方法去除内部的模板,得到具有大尺寸的中空MoS2微球。实施例的结果表明,本发明能够制备得到表具有较大尺寸的中空微球,粒度分布1~30μm;中空微球表面是超薄纳米片组装的多孔结构,具有丰富的孔道结构,孔的尺寸为2~500nm的介孔及大孔,壳层厚度可以在5~500nm之间进行调节。本发明制备的MoS2材料尺寸较大,纳米片状二硫化钼垂直生排列形成了三维多孔的结构,在催化、光/电催化、吸附、气敏传感、润滑等领域都有较优异的性能。
-
公开(公告)号:CN110152737A
公开(公告)日:2019-08-23
申请号:CN201910389547.8
申请日:2019-05-10
Applicant: 三峡大学
Abstract: 本发明公开了一种双金属硫化物基复合材料,应用一步水热法制备了一种双金属硫化物纳米微球与以Zr为金属中心的金属有机框架(MOF)的复合材料,ZnCdS纳米微球与有机框架材料形成异质结构的纳米复合催化材料的制备及其在光催化产氢中的应用,属于纳米材料制备技术及绿色能源领域。本发明首先利用氯化锆和对苯二甲酸为原料,经过溶剂热合成方块状Zr金属有机框架材料(简称UIO-66(Zr)),然后利用乙酸镉和乙酸锌进一步合成ZnCdS纳米微球改性金属有机框架UIO-66(Zr)的纳米复合材料。该纳米复合材料在光催化产氢中显示出优异的催化活性。
-
公开(公告)号:CN109650450A
公开(公告)日:2019-04-19
申请号:CN201910085058.3
申请日:2019-01-18
Applicant: 三峡大学
IPC: C01G39/06 , B01J20/02 , B01J20/30 , B01J27/051
Abstract: 本发明提供了一种表面多孔结构的大尺寸中空MoS2微球及其制备方法和应用。本发明先采用水热法制备大尺寸的Cu-Fe2O3微球,然后以该微球为模板通过水热法在其表面垂直生长MoS2层状纳米片,最后将得到的复合材料通过腐蚀液刻蚀的方法去除内部的模板,得到具有大尺寸的中空MoS2微球。实施例的结果表明,本发明能够制备得到表具有较大尺寸的中空微球,粒度分布1~30μm;中空微球表面是超薄纳米片组装的多孔结构,具有丰富的孔道结构,孔的尺寸为2~500nm的介孔及大孔,壳层厚度可以在5~500nm之间进行调节。本发明制备的MoS2材料尺寸较大,纳米片状二硫化钼垂直生排列形成了三维多孔的结构,在催化、光/电催化、吸附、气敏传感、润滑等领域都有较优异的性能。
-
公开(公告)号:CN109647487A
公开(公告)日:2019-04-19
申请号:CN201910085056.4
申请日:2019-01-18
Applicant: 三峡大学
Abstract: 本发明公开了一种p-n结结构氧化亚铜与石墨相氮化碳纳米复合材料的制备及其在光催化产氢中的应用,属于纳米材料制备技术及能源开发领域。本发明采用两步法合成技术,首先利用尿素为原料,经过高温缩聚处理合成多孔石墨相氮化碳,然后将硝酸铜溶于DMF溶液中,加入不同量的石墨相氮化碳,经过特定的程序控温,溶剂热法得到Cu2O@g-C3N4复合材料。该复合材料是由p型Cu2O中空纳米球和n型g-C3N4纳米片组成的新型Cu2O@g-C3N4 p-n结光催化剂。其中,空心Cu2O纳米球不仅可以作为一种优良的光敏剂,而且还可以在腔内实现太阳光的多次反射,从而在内置p-n结的协同作用下实现了较高的光催化分解。经实验发现,该纳米复合材料具有优异的光催化产氢活性。
-
公开(公告)号:CN104402041B
公开(公告)日:2016-01-06
申请号:CN201410551566.3
申请日:2014-10-17
Applicant: 三峡大学
CPC classification number: Y02P20/124
Abstract: 本发明涉及一种分散性好的SnO2/Ag纳米复合粉体及其制备方法。其中制备方法为,首先以可溶性无机盐SnCl2·2H2O、AgNO3为原料,分别配制一定浓度的溶液并按照比例混合得到乳白色的沉淀,然后向沉淀中加入氨水调节pH得到棕褐色的沉淀,最后将所得沉淀物经洗涤、干燥、烧结后得到SnO2/Ag纳米复合粉体。本发明通过液相沉淀法实现了纳米SnO2在复合粉体中的弥散分布,避免了传统粉末冶金法中纳米粒子易于团聚的问题。本发明方法制备工艺简单、节能、省时,有利于工业化生产和推广,具有广阔的应用前景。
-
公开(公告)号:CN110652988B
公开(公告)日:2022-08-19
申请号:CN201910913161.2
申请日:2019-09-25
Applicant: 三峡大学
IPC: B01J27/043 , B01J37/34 , C01B3/04
Abstract: 本发明公开了一种光沉积法制备双金属硫化物微球负载NiS薄膜的方法,具体为ZnCdS纳米微球与NiS无定型薄膜形成异质结构的纳米复合催化材料的制备方法及其在光催化产氢中的应用。在制备过程中首先水热法合成ZnCdS纳米微球,然后以其为基底,采用光化学方法成功地合成了一种新型的NiS薄膜修饰ZnCdS纳米粒子的异质结构纳米复合材料。得到的NiS/ZnCdS异质结构纳米复合材料结构良好,半导体ZnCdS与辅助催化剂NiS薄膜之间具有较强的粘附性,对光生电子具有良好的转移能力,对可见光的吸附能力强。通过改变镍源和硫源加入量,可以简单地调节复合材料中NiS含量。该纳米复合材料在光催化产氢中显示出优异的催化活性。
-
-
-
-
-
-
-
-
-