-
公开(公告)号:CN101470730A
公开(公告)日:2009-07-01
申请号:CN200710304207.8
申请日:2007-12-26
Applicant: 中国科学院自动化研究所
Abstract: 本发明是一种基于频谱特征分析的图像重复检测方法,包括:通过下采样模块对图像进行下采样,通过频谱分析模块对图像进行频谱分析;用于提取图像像素的颜色信息;通过频谱分析模块对图像进行梯度信息分析;用于获取下采样后的图像梯度分布特征,该特征具有旋转、平移以及尺度不变的性质;通过索引生成模块融合图像颜色和梯度信息,作为图像索引。采用这种方法可以极大地减少数据库的存储冗余度,提高了现有检索系统的检索性能和效率。
-
公开(公告)号:CN1168044C
公开(公告)日:2004-09-22
申请号:CN01144157.7
申请日:2001-12-13
Applicant: 中国科学院自动化研究所
CPC classification number: G06K9/00348
Abstract: 一种基于步态的远距离身份识别方法,包括训练和识别两个过程,所述的训练过程包括步骤:获取训练步态序列;空间轮廓分割;形状距离信号提取;主成分分析;个性化体格特征提取,提取可视的个性化特征作为附加特征,用于步态分类的最终校验;获得已训练的步态数据库。利用统计主元分析方法,本发明实现了一个基于步态行为的远距离身份识别系统。改进的背景减除方法被提出用于从背景中提取步态运动;具有时空变化的运动轮廓经过特征空间变换来实现步态特征的提取;识别过程采用时空相关匹配或者最近邻规则,一些与个人形体和体格有关的个性化特征亦被选择用于最终判决的校验。
-
公开(公告)号:CN114219936B
公开(公告)日:2025-03-28
申请号:CN202111266514.8
申请日:2021-10-28
Applicant: 中国科学院自动化研究所 , 人民中科(济南)智能技术有限公司
IPC: G06V10/25 , G06V10/764 , G06V10/82 , G06N3/0464 , G06N3/0895
Abstract: 本发明提供一种目标检测方法、电子设备、存储介质和计算机程序产品,方法包括获取包含待检测目标的待检测图像;将所述待检测图像输入至目标检测模型,进行目标检测,获得所述目标检测模型输出的目标检测结果,所述目标检测模型是基于候选框及其对应的正负标签训练得到的,所述正负标签是基于所述候选框与所述候选框对应的真实框的交并比,以及动态变化的交并比阈值确定得到的。本发明通过动态变化的交并比阈值,动态变化候选框的正负标签,以使最后分配给候选框的正负标签为准确标签,从而提高候选框的标签分配准确度,进而提高目标检测模型的召回率,最终实现高性能的目标检测。
-
公开(公告)号:CN119360893A
公开(公告)日:2025-01-24
申请号:CN202411523922.0
申请日:2024-10-29
Applicant: 中国科学院自动化研究所 , 人民中科(北京)智能技术有限公司
Abstract: 本公开关于声音分类方法、装置、电子设备、存储介质和计算机程序产品,包括:提取待分类的声音信号的音频特征;将音频特征输入脉冲残差模块,获得第一脉冲残差特征;将第一脉冲残差特征输入至少一个脉冲残差模块,获得第二脉冲残差特征;将第二脉冲残差特征以及经过下采样后的第一脉冲残差特征输入注意力特征融合模块,获得第一注意力融合特征;基于第一注意力融合特征,对待分类的声音信号进行分类。本公开可以充分利用脉冲神经网络(SNN)和残差神经网络的优势,可以实现高效、准确的进行声音分类,并可以显著降低系统功耗。
-
公开(公告)号:CN119314020A
公开(公告)日:2025-01-14
申请号:CN202411423624.4
申请日:2024-10-12
Applicant: 中国科学院自动化研究所
Abstract: 本发明涉及目标识别技术领域,公开了基于脉冲神经网络的视觉识别方法及装置,包括:对预设动态目标的视频样本数据进行脉冲编码得到脉冲序列,输入预设的脉冲神经网络进行残差计算,对脉冲网络输出特征进行长短期时序特征提取,将提取出的长短期时序特征与脉冲网络输出特征进行融合得到目标融合特征,计算目标融合特征的损失值,对脉冲神经网络进行反向迭代更新,得到目标长短期时序特征融合模型;将待识别的动态目标的视频流数据输入到长短期时序特征融合模型得到识别结果。本发明通过结合长短期时序特征提取,克服了现有脉冲神经网络在捕捉和识别动态数据时无法有效利用时序信息进行动态数据识别的缺陷,提升对于动态数据的视觉识别准确性。
-
公开(公告)号:CN118885942B
公开(公告)日:2024-12-06
申请号:CN202411357043.5
申请日:2024-09-27
Applicant: 中国科学院自动化研究所
IPC: G06F18/2433 , G06N3/0455 , G06N3/0499 , G06N3/08 , G06F18/23213 , G06F18/2413 , G06F18/27
Abstract: 本发明提供一种基于价格模式聚类学习的歧视定价识别方法以及装置,应用于人工智能领域,上述方法包括:获取包含歧视定价场景下的订单数据;针对类别数据、时间数据以及数值数据分别进行预处理,得到订单数据集;将非歧视定价子集输入至非歧视编码器,得到非歧视编码序列;将歧视定价子集输入至歧视编码器,得到歧视编码序列;将非歧视编码序列与歧视编码序列,分别输入至非歧视定价解码器与歧视定价解码器,得到非歧视预测价格与歧视预测价格;基于订单数据的真实价格分别与非歧视预测价格与歧视预测价格进行比较,得到用于表示真实价格为非歧视定价或歧视定价的定价识别结果。通过本发明能够实时对歧视定价行为进行准确识别。
-
公开(公告)号:CN118535765B
公开(公告)日:2024-12-06
申请号:CN202411003383.8
申请日:2024-07-25
Applicant: 中国科学院自动化研究所
IPC: G06F16/783 , G06N3/0455 , G06N3/0464 , G06V20/62 , G06N3/0895 , G06F18/22
Abstract: 本发明涉及跨模态技术领域,提供一种跨模态模型的训练方法、装置、设备和存储介质,包括视频编码器提取第一视频特征,文本编码器提取第一文本特征以及文本掩码特征、同一词汇空间下的第二视频特征与第二文本特征、同一词汇空间下的第三视频特征与第三文本特征;基于第二视频特征与第二文本特征获取第一全局损失函数,基于第二视频特征与文本掩码特征获取第二全局损失函数;基于第一视频特征、第一文本特征以及感知器获取第一局部损失函数;基于第一视频特征、文本掩码特征以及感知器获取第二局部损失函数;基于第一全局损失函数、第二全局损失函数、第一局部损失函数、第二局部损失函数、掩码损失函数进行训练。实现缓解模态鸿沟的问题。
-
公开(公告)号:CN118227831B
公开(公告)日:2024-11-05
申请号:CN202410644212.7
申请日:2024-05-23
Applicant: 中国科学院自动化研究所
IPC: G06F16/78 , G06F16/783 , G06N3/0455 , G06N3/08
Abstract: 本发明涉及视频检索技术领域,提供一种跨模态视频检索方法、装置及电子设备,方法包括:提取查询文本的隐式特征和词表特征;基于特征提取模型,得到各候选视频的隐式特征和各候选视频的词表特征;基于查询文本的隐式特征与各候选视频的隐式特征之间的相似度以及查询文本的词表特征与各候选视频的词表特征之间的相似度,确定查询文本对应的检索视频;特征提取模型的词表特征训练阶段以最小化样本视频的词表特征与样本描述文本的词表特征之间的差异为训练目标,联合训练阶段以样本视频的隐式特征与样本描述文本的隐式特征之间的相似度作为软标签,最小化学生预测结果与软标签之间的差异为训练目标。本发明能够提高跨模态视频检索能力。
-
公开(公告)号:CN118885942A
公开(公告)日:2024-11-01
申请号:CN202411357043.5
申请日:2024-09-27
Applicant: 中国科学院自动化研究所
IPC: G06F18/2433 , G06N3/0455 , G06N3/0499 , G06N3/08 , G06F18/23213 , G06F18/2413 , G06F18/27
Abstract: 本发明提供一种基于价格模式聚类学习的歧视定价识别方法以及装置,应用于人工智能领域,上述方法包括:获取包含歧视定价场景下的订单数据;针对类别数据、时间数据以及数值数据分别进行预处理,得到订单数据集;将非歧视定价子集输入至非歧视编码器,得到非歧视编码序列;将歧视定价子集输入至歧视编码器,得到歧视编码序列;将非歧视编码序列与歧视编码序列,分别输入至非歧视定价解码器与歧视定价解码器,得到非歧视预测价格与歧视预测价格;基于订单数据的真实价格分别与非歧视预测价格与歧视预测价格进行比较,得到用于表示真实价格为非歧视定价或歧视定价的定价识别结果。通过本发明能够实时对歧视定价行为进行准确识别。
-
公开(公告)号:CN118780985A
公开(公告)日:2024-10-15
申请号:CN202411259633.4
申请日:2024-09-10
Applicant: 中国科学院自动化研究所
IPC: G06T3/4053 , G06T3/4046 , G06V10/44 , G06V10/80 , G06V10/82 , G06N3/0464 , G06N3/084
Abstract: 本发明提供了一种图像重建方法、模型训练方法、装置、设备、介质及产品,可以应用于图像超分辨率重建领域。图像重建方法包括:对存在质量损失的退化图像进行特征提取,得到表征图像底层细节的底层图像特征和表征图像退化信息的隐式退化特征;利用隐式退化特征调节器分别对隐式退化特征进行通道级和空间级的扩展;将扩展后的隐式退化特征融入到底层图像特征中,分别得到融合了图像退化信息的通道图像特征和空间图像特征;将通道图像特征和空间图像特征进行特征融合并引入底层图像特征,以对退化图像的高频细节进行恢复;将进行细节恢复后得到的图像特征输入图像超分辨率模块中,输出重建的目标图像,其中,目标图像的分辨率高于退化图像。
-
-
-
-
-
-
-
-
-