结合分类加强与细化微调的目标跟踪方法、装置及可读介质

    公开(公告)号:CN116739903A

    公开(公告)日:2023-09-12

    申请号:CN202310793797.4

    申请日:2023-06-30

    Applicant: 华侨大学

    Abstract: 本发明公开了一种结合分类加强与细化微调的目标跟踪方法、装置及可读介质,构建目标跟踪网络模型并训练,得到经训练的目标跟踪网络模型,将当前帧输入ResNet模块,将ResNet模块的输出特征输入全局感知模块,得到全局感知特征,将全局感知特征与模板帧输入分类加强模块,得到前景特征图和前景概率特征图;在第一分支中,将降维后的全局感知特征与模板帧输入判别相关滤波器,得到定位特征图;在第二分支中,将前景特征图、前景概率特征图和定位特征图融合得到混合特征图,将混合特征图与ResNet模块的部分输出特征输入微调路径模块,得到目标的掩膜,通过拟合掩膜,得到矩形框,细化微调模块根据矩形框提取目标的特征,并与模板帧做逐像素相关,得到目标跟踪框。

    一种基于多分支卷积神经网络的HEVC帧内预测方法

    公开(公告)号:CN109996084B

    公开(公告)日:2022-11-01

    申请号:CN201910361446.X

    申请日:2019-04-30

    Applicant: 华侨大学

    Abstract: 本发明涉及一种基于多分支卷积神经网络的HEVC帧内预测方法,属于视频编码领域,本方法使用多分支卷积神经网络,对每个CTU进行预处理,并分别作为不同分支的卷积神经网络的输入,经过卷积计算之后,将得到的特征进行全连接,考虑不同QP值的影响,并最终输出三个分支的分类结果,三个分支分别对应每个CTU中深度等级0,1,2,判断三个深度等级的CU是否继续划分或者停止划分。本发明一种基于多分支卷积神经网络的HEVC帧内预测方法能够有效地减少编码器计算开销,在保持编码性能基本不变的情况下,减少编码时间。

    一种高效的车辆再辨识方法和装置

    公开(公告)号:CN113486723A

    公开(公告)日:2021-10-08

    申请号:CN202110649660.2

    申请日:2021-06-10

    Applicant: 华侨大学

    Abstract: 本发明涉及一种高效车辆再辨识方法,包括:构造四个不同方向性深度网络,并在它们的训练过程中使用困难样本进行协调调度,增强四个方向性深度所学车辆特征之间的互补性;利用知识蒸馏方法,将四个不同方向性深度网络作为教师网络,用于指导一个简单的学生网络训练,再将学生网络用于车辆再辨识,从而降低车辆再辨识的计算量。

Patent Agency Ranking