-
公开(公告)号:CN114836716A
公开(公告)日:2022-08-02
申请号:CN202210292866.9
申请日:2022-03-23
Applicant: 中南大学
IPC: C23C14/16 , C23C14/35 , C23C14/58 , C23C16/40 , C23C16/455 , C23C16/56 , C23C14/04 , C23C28/00 , H01L21/02 , H01L29/78
Abstract: 本发明公开了一种无顶电极夹持HfO2基薄膜材料的制备方法及应用,制备步骤如下:以Si为基底,采用标准的RCA工艺对其进行表面清洁;采用直流磁控溅射方法在Si底上溅射一层金属Ti层;将Ti/Si置入原子层沉积ALD系统中,进行HfO2基薄膜的沉积;将沉积完的HfO2基薄膜/Ti/Si进行退火;退火完成后,再将HfO2基薄膜/Ti/Si放入磁控溅射里,采用掩模版进行顶电极溅射,得到无顶电极夹持HfO2基薄膜材料。通过本发明方法既可以消弱顶电极对薄膜铁电性的决定性作用,同时也能保证HfO2基薄膜材料具有强铁电性和稳定性,又可以避开FeFET制备过程当中顶电极刻蚀这一过程,保障干净的界面质量,并实现工艺的简单化和低成本化。
-
公开(公告)号:CN113070057B
公开(公告)日:2022-05-17
申请号:CN202110351138.6
申请日:2021-03-31
Applicant: 中南大学
IPC: B01J23/22 , B01J35/02 , B01J35/08 , C02F1/30 , C02F101/30 , C02F101/34 , C02F101/36 , C02F101/38
Abstract: 本发明涉及材料技术领域,具体涉及一种光电‑压电复合材料及其制备方法。具体技术方案为:一种光电‑压电复合材料,所述复合材料为BiVO4‑Bi0.5Na0.5TiO3,以Bi0.5Na0.5TiO3纳米球作为基体,采用水热法在Bi0.5Na0.5TiO3纳米球表面生长BiVO4。本发明通过在压电材料表层复合光催化材料,利用压电与光电材料复合形成的异质结,提高电子空穴的分离率,提高电子寿命,从而提升催化性能,进而使得本发明所公开的光电‑压电复合材料自身能够通过吸收自然界中的太阳能产生电子和空穴,从而实现太阳能向电能的转换。
-
公开(公告)号:CN109400179B
公开(公告)日:2022-04-12
申请号:CN201811448491.0
申请日:2018-11-30
Applicant: 中南大学
IPC: C04B35/622 , B33Y10/00 , B33Y70/00 , B33Y70/10 , B33Y80/00 , C04B35/10 , C04B35/48 , C04B38/00 , B22F3/22
Abstract: 本发明公开了一种制备宏观与微观结构皆可控的材料的方法,所述方法通过将3D直写成型技术与冷冻浇注法相结合实现,具体的将原料A加入含分散剂的溶剂中第一次混合获得悬浮液,然后再将悬浮液中加入凝胶剂第二次混合获得浆料;将浆料通过3D直写设备,并控制浆料通过直写设备时处于凝胶状态,打印、冷冻处理获得具有三维结构的坯体,坯体经冷冻干燥,烧结即获得宏观与微观结构皆可控的材料;本发明首创的实现了直写成型及冷冻浇注技术的高效结合;克服了传统制备技术在同时实现微观孔洞结构及复杂三维结构方面的限制。
-
公开(公告)号:CN113912390A
公开(公告)日:2022-01-11
申请号:CN202111454238.8
申请日:2021-12-01
Applicant: 中南大学
IPC: C04B35/453 , C04B35/622 , C04B41/00
Abstract: 本发明公开了一种用于提高铁酸铋‑钛酸钡铁电陶瓷极化强度的热处理方法,包括如下步骤,将铁酸铋‑钛酸钡铁电陶瓷置于单晶硅片上,然后放入退火炉中于氧气气氛下进行热处理,热处理过程中,先通入氧气5min以上,然后以≧20℃/s的升温速率升温至800~1000℃,保温30~180s,并于300s内降温至200℃以下,取出,获得热处理后的铁酸铋‑钛酸钡铁电陶瓷;本发明的热处理方法利用短时间内将置于单晶硅衬底上的铁酸铋‑钛酸钡基固溶体陶瓷升温到一定温度并保温一定时间后迅速降温,使陶瓷的极化强度提高。同时高温下原子扩散加快,单晶硅原子与铁酸铋‑钛酸钡相互扩散,利用单晶硅与铁酸铋‑钛酸钡晶胞参数的巨大差异,进一步增大了铁酸铋‑钛酸钡晶胞中的四方性,从而使铁酸铋‑钛酸钡基固溶体陶瓷的极化强度大幅的提升。
-
公开(公告)号:CN113903597A
公开(公告)日:2022-01-07
申请号:CN202111338203.8
申请日:2021-11-12
Applicant: 中南大学
IPC: H01G4/06
Abstract: 本发明公开了一种碳量子点/聚合物介电复合材料及其制备方法和应用,所述介电复合材料为由聚合物基体以及均匀分散于聚合物基体中的碳量子点组成,所述碳量子点在介电复合材料中的质量分数为0.01~10.0wt%,所述聚合物基体中的聚合物选自PP、PMP、PS、ABS、PE、PET、PMMA、PEI、PI、PVDF、P(VDF‑HFP)、P(VDF‑CTFE)、P(VDF‑TrFE‑CTFE)中的至少一种。其制备方法为将碳量子点通过超声分散于聚合物基体的良溶剂中,然后加入聚合物颗粒搅拌获得混合液,将混合液浇铸成型,或者将碳量子点通过超声分散于有机溶剂中,然后与聚合物颗粒熔融共混获得混合料,再通过拉伸或者压制成薄膜。所述碳量子点/聚合物介电复合材料用于电介质电容器,可大幅提升电介质电容器的储能密度和效率。
-
公开(公告)号:CN109650884B
公开(公告)日:2021-10-15
申请号:CN201811047417.8
申请日:2018-09-09
Applicant: 中南大学
IPC: C04B35/495 , C04B35/622 , C04B35/626 , C04B35/64 , H01G4/12
Abstract: 本发明公开了一种铌酸银基陶瓷及其制备方法,通过高温固相反应法在氧气气氛中制得了铌酸银基陶瓷粉末,然后得用传统固相法进行烧结,制得了铌酸银基陶瓷,该陶瓷材料的储能密度可达4.6J/cm3,储能效率高达57.5%,击穿电场强度可达220kV/cm,具有高抗击穿电场、高储能密度与高储能效率的优点,可应用于制备绝缘电介质。所述绝缘电介质还可应用于制备储能电容器。因此该陶瓷材料在脉冲电源领域有良好的应用前景。
-
公开(公告)号:CN109942292B
公开(公告)日:2021-09-07
申请号:CN201910292348.5
申请日:2019-04-12
Applicant: 中南大学
IPC: H01B3/12 , C04B35/475 , C04B41/88
Abstract: 本发明公开了一种钛酸铋钠基透明陶瓷材料及其制备方法,其化学通式为(0.95‑x)Bi0.5Na0.5TiO3‑0.05BaTiO3‑xBi(Zn2/3Nb1/3)O3,x=0.05~0.15(简写为(0.95‑x)BNT‑BT‑xBZN)。采用传统固相法经过一次预烧,一次烧结而成,通过加入助烧剂和调节烧结工艺,成功在较低烧结温度下制备出透明细晶陶瓷,平均晶粒尺寸约为400nm。本发明制备的陶瓷片表现出强介电弛豫性,细长铁电电滞回线和高抗击穿电场,是一种优异的介电储能陶瓷材料。在18kV/mm的外加电场下获得了最高的放电能量密度2.83J/cm3,此时储能密度为4.23J/cm3,储能效率为67%。此外其储能性能的循环稳定性也十分优异,经过105次循环测试,放电能量密度的损失低于2%。
-
公开(公告)号:CN113070057A
公开(公告)日:2021-07-06
申请号:CN202110351138.6
申请日:2021-03-31
Applicant: 中南大学
IPC: B01J23/22 , B01J35/02 , B01J35/08 , C02F1/30 , C02F101/30 , C02F101/34 , C02F101/36 , C02F101/38
Abstract: 本发明涉及材料技术领域,具体涉及一种光电‑压电复合材料及其制备方法。具体技术方案为:一种光电‑压电复合材料,所述复合材料为BiVO4‑Bi0.5Na0.5TiO3,以Bi0.5Na0.5TiO3纳米球作为基体,采用水热法在Bi0.5Na0.5TiO3纳米球表面生长BiVO4。本发明通过在压电材料表层复合光催化材料,利用压电与光电材料复合形成的异质结,提高电子空穴的分离率,提高电子寿命,从而提升催化性能,进而使得本发明所公开的光电‑压电复合材料自身能够通过吸收自然界中的太阳能产生电子和空穴,从而实现太阳能向电能的转换。
-
公开(公告)号:CN111646803B
公开(公告)日:2021-04-13
申请号:CN202010545474.X
申请日:2020-06-16
Applicant: 中南大学
IPC: C04B35/571 , C04B35/622 , B33Y10/00 , B33Y70/00 , C04B35/634 , B28B1/00
Abstract: 本发明公开了一种熔融态3D直写浆料及其制备方法和应用,所述熔融态3D直写打印浆料为采用改性剂对陶瓷先驱体改性,所得改性陶瓷先驱体粉末再加热至250℃~300℃所得熔融态的物质,所述陶瓷先驱体为聚碳硅烷。所述改性剂选自聚丙烯,超支化液态聚碳硅烷,液态聚乙烯基硅烷,聚二甲基硅氧烷中的至少一种。本发明首创的提供了一种熔融态的3D直写打印浆料,即是一种完全无溶剂的3D直写打印浆料,通过控制温度即可以简单的控制浆料流变性能。相比于溶液、悬浮液浆料,采用本发明中的熔融态的3D直写打印浆料制备的陶瓷结构表面十分光滑,内部几乎没有缺陷,去除了打印后的坯体需要脱除溶剂的过程,克服了溶剂对坯体的不利影响。
-
公开(公告)号:CN111646804B
公开(公告)日:2021-03-26
申请号:CN202010545506.6
申请日:2020-06-16
Applicant: 中南大学
IPC: C04B35/571 , C04B35/622 , C04B38/00 , B29C64/106 , B29C64/379 , B29C35/02 , B33Y10/00 , B33Y40/20 , B33Y70/00 , B33Y80/00
Abstract: 本发明提供了一种空心管微点阵结构陶瓷材料的制备方法,包括如下步骤:将熔融态的改性陶瓷先驱体通过直写成形装置,于保护气氛下打印获得三维点阵结构的粗坯,然后将三维点阵结构的粗坯在交联气氛下进行不完全交联反应,获得不完全交联的坯体,去除坯体中未交联的部分,获得空心管微点阵先驱体支架,再进行热解即得空心管微点阵结构陶瓷材料。本发明借助增材制造技术结合后续热处理得到结构独特的陶瓷材料,克服了以往空心管微点阵材料造价高昂、工艺复杂的弊端,实现了管壁厚度在1~100μm之间的调控。保证材料在具有低密度的同时,保持了陶瓷高强度、高硬度,优异的化学稳定性与热稳定性,同时获得了结构多样,形状复杂的陶瓷样件。
-
-
-
-
-
-
-
-
-