一种基于硬件特征的算子调度方案自动搜索方法与系统

    公开(公告)号:CN117950645A

    公开(公告)日:2024-04-30

    申请号:CN202410339678.6

    申请日:2024-03-25

    Abstract: 本发明提供一种基于硬件特征的算子调度方案自动搜索方法与系统。该方法是通过获取算子输入数据的维度信息、目标硬件的硬件特征以及包含各存储层级的容量和硬件指令支持情况;再根据目标硬件的存储层级从高到低,递归地在每一个层级上,基于贪心策略搜索该层级可接受的最佳可行的数据搬运方案;其中各层级的数据搬运方案共同构成算子的调度方案;最后进行性能评估。基于搜索到的若干个算子调度方案,通过CodeGen技术生成目标硬件上的若干个算子实现,进而在硬件上测试选出性能最优的算子调度方案。因此,本发明的技术方案能够节省算力的情况下保证算子调度的优化。

    一种基于分段量化的检查点写入方法及装置

    公开(公告)号:CN117873789A

    公开(公告)日:2024-04-12

    申请号:CN202410287649.X

    申请日:2024-03-13

    Abstract: 在本说明书提供的一种基于分段量化的检查点写入方法及装置中,获取待写入的模型状态,并针对该模型状态中每个向量值,确定该向量值中数值的取值范围以及初始量化位宽,通过分段数量对该向量值进行分段,并针对该向量值中每个数值,确定该数值的所属分段以及该所属分段的分段取值范围,进而对该数值进行量化,根据量化后的各数值,确定量化后的该向量值,并写入检查点文件,该检查点文件用于模型的模型状态恢复。通过分段数量对该向量值进行分段,以及通过精准划分各所属分段的分段取值范围,再对各数值进行量化,在减少存储需求的同时,降低了数值量化的精度损失,并将各量化后的向量值全量写入检查点文件,减少恢复模型状态的复杂性。

    一种固态盘存储系统的选择性数据压缩方法及装置

    公开(公告)号:CN117666968A

    公开(公告)日:2024-03-08

    申请号:CN202311759362.4

    申请日:2023-12-20

    Abstract: 本发明公开了一种固态盘存储系统的选择性数据压缩方法及装置,该方法是在固态盘存储系统上设置压缩位图表和三个功能模块:负载监测模块、数据压缩模块和数据解压缩模块,由请求类型判断步骤、数据的压缩写入步骤和数据的解压缩读取步骤组成。根据系统的当前负载和CPU计算资源状态,该方法充分利用存储系统中数据的冗余特性和固态盘的闪存介质特性,通过利用动态的数据压缩技术减少冗余信息,减少写入数据量,以此缓解固态盘读写性能不对称的问题,同时提升固态盘的空间利用率和可靠性。

    芯片封装结构及封装方法
    174.
    发明公开

    公开(公告)号:CN117219609A

    公开(公告)日:2023-12-12

    申请号:CN202311190766.6

    申请日:2023-09-14

    Abstract: 本申请提供一种芯片封装结构及封装方法。其中,芯片封装结构包括基板、第一功能芯片和第二功能芯片。基板包括相对的第一表面和第二表面。第一功能芯片设置于基板的第一表面上,第一功能芯片包括相对的第一有源面和第一背面,第一背面朝向基板的第一表面;第二功能芯片设置于基板的第一表面上,第二功能芯片包括相对的第二有源面和第二背面,第二有源面朝向基板的第一表面,第二有源面包括第一连接区和第二连接区,所述第一连接区通过第一金属凸点与所述第一功能芯片的第一有源面电连接,所述第二连接区通过第二金属凸点与所述基板电连接。可实现,提高芯片的集成度和互连密度,节省制备成本。

    一种算子优化方法、装置、存储介质及电子设备

    公开(公告)号:CN116663618B

    公开(公告)日:2023-12-05

    申请号:CN202310941263.1

    申请日:2023-07-28

    Abstract: 本说明书公开了一种算子优化方法、装置、存储介质及电子设备。在本说明书提供的算子优化方法中,获取目标神经网络模型,并确定目标神经网络模型的计算图;针对计算图中每个算子,确定包含该算子所有可行解的搜索空间;在搜索空间中选择若干可行解作为候选解,确定各候选解的评估值,并将评估值最高的作为待定解;确定目标硬件运行待定解的运行时间,并增加迭代次数;当运行时间小于当前最优时间或不存在当前最优时间时,将运行时间确定为当前最优时间,并将待定解确定为当前最优解;当迭代次数小于指定次数时,重新在该算子的搜索空间中选择指定数量个未被选择过的候选解;当迭代次数不小于指定次数时,将当前最优解确定为该

    一种基于标签分布的个性化联邦学习模型训练方法及装置

    公开(公告)号:CN117077817A

    公开(公告)日:2023-11-17

    申请号:CN202311328295.0

    申请日:2023-10-13

    Abstract: 本说明书公开了一种基于标签分布的个性化联邦学习模型训练方法及装置。所述任务执行方法包括:根据获取到的目标模型的初始化模型参数,针对每个客户端,将初始化模型参数发送给该客户端,以使该客户端在本地部署待训练模型,并通过该客户端的本地数据,对待训练模型进行训练,并获取各客户端训练更新后的模型参数,以及每个客户端训练各自的待训练模型时所使用的本地数据的标签分布,以得到每个客户端对应的客户端簇。针对每个客户端,融合该客户端对应的客户端簇中包含的各客户端发送的更新后的模型参数,并将融合后参数下发给该客户端,以使该客户端根据所述融合后参数,对本地部署的待训练模型进行参数更新,以通过更新后的模型执行目标任务。

    面向深度学习的分布式计算系统的作业调度方法和装置

    公开(公告)号:CN116755893B

    公开(公告)日:2023-11-17

    申请号:CN202311056655.6

    申请日:2023-08-22

    Abstract: 面向深度学习的分布式计算系统的作业调度方法和装置,包括:获取用户输入的作业信息,并存储在数据库中,作业信息包括作业优先级等,并根据作业信息维护一个作业优先级队列;获取集群中各节点的缓存信息;响应于接收到发起作业执行的请求,作业执行根据所述的优先级队列先后顺序执行,将所述作业调度到相应主机节点上执行,执行的结果存储到数据库中;响应于接收到模型更新作业的请求,在所述数据库中查询所述作业所需的数据,计算作业剩余结束时间,并将计算结果保存到数据库中;响应与接收到更新所述队列请求,在所述数据库中查询所需的数据,并根据所述数据更新所述队列。本发明较少依赖用户输入信息,有效提高作业执行时间预测精度。

    面向芯粒集成设计的图神经网络温度场预测方法和装置

    公开(公告)号:CN117034721A

    公开(公告)日:2023-11-10

    申请号:CN202311289898.4

    申请日:2023-10-08

    Abstract: 本发明公开了一种面向芯粒集成设计的图神经网络温度场预测方法和装置,包含:根据有限元网格划分,将网格单元视为图数据的节点,相邻的两个网格单元用边连接,获得由节点和边组成的封装结构的图数据;根据网格单元顶点位置信息、材料属性、仿真问题的初值条件和边值条件,获得节点的初始编码;设计深度图神经网络模型,首先获得节点和边在高维空间的投射,然后让节点聚合边的信息,边聚合节点的信息,最后将节点信息解码为温度数值;根据物理方程设计损失函数并训练模型;用训练好的模型进行温度分布预测;最后将网格单元的温度用插值方法计算每个顶点的温度。

    一种数据调度方法、装置和计算机设备

    公开(公告)号:CN117032936A

    公开(公告)日:2023-11-10

    申请号:CN202311267177.3

    申请日:2023-09-28

    Abstract: 本申请涉及一种数据调度方法、装置和计算机设备。所述方法包括:对TPU上的数据进行分块,将加载时间和卸载时间均相同的数据划分为同一数据块;基于数据块所对应的加载时间和卸载时间,得到数据调度模型的初始参数;基于每块TPU存储量的大小,得到数据块占用TPU数量的时间分布;根据数据块占用TPU数量的时间分布,计算资源消耗量;利用粒子群优化算法,对初始数据调度模型的参数进行优化训练,直至按照训练后的数据调度模型进行数据调度的资源消耗量,达到按照预设的最少的TPU数量计算得到的资源消耗量时,停止训练,得到完备数据调度模型;基于完备数据调度模型,对TPU上的数据块进行数据调度。采用本方法能够解决计算机的计算资源消耗高的问题。

Patent Agency Ranking