-
公开(公告)号:CN108536735B
公开(公告)日:2020-12-15
申请号:CN201810178559.1
申请日:2018-03-05
Applicant: 中国科学院自动化研究所
IPC: G06F16/9032 , G06F40/30 , G06N3/04 , G06N3/08
Abstract: 本发明涉及自然语言处理领域,具体涉及一种基于多通道自编码器的多模态词汇表示方法与系统,目的在于提高表示结果的准确性。本发明的词汇表示方法,先通过向量数据库查询待表示词汇的文本模态向量、视觉模态向量、音频模态向量;对于没有视觉模态和音频模态的词汇,利用训练好的映射模型去预测缺失的视觉向量以及听觉向量;再计算上述三种向量与对应模态权重的点积;最后将上述加权后的向量作为多通道自编码器模型的输入,对三种模态的信息进行融合,得到多模态的词汇表示向量。本发明利用不同模态间的相关性,融合不同模态的信息,并引入模态权重,有效提高了词汇表示的准确度。为了对不同模态进行更好的融合,还加入了联想词汇预测模块。
-
公开(公告)号:CN109190109B
公开(公告)日:2020-09-29
申请号:CN201810833407.0
申请日:2018-07-26
Applicant: 中国科学院自动化研究所
IPC: G06F40/258 , G06F16/35 , G06N3/04 , G06N3/08
Abstract: 本发明属于情感分类技术领域,具体提供了一种融合用户信息生成评论摘要的方法及装置,旨在解决现有技术忽略用户信息导致生成的评论摘要不准确的问题。为此目的,本发明提供了一种融合用户信息生成评论摘要的方法,包括基于预先获取的评论信息以及相应的用户信息和评论标题获取评论向量;基于预先构建的评论摘要生成模型并根据评论向量,获取评论向量对应的评论摘要;其中,评论摘要生成模型是基于预设的语料集并利用机器学习算法所构建的神经网络模型。基于上述步骤,本发明提供的方法可以根据不同用户关注评论信息中不同的评价对象,充分考虑不同的用户的用词习惯的差异性,生成准确的评论摘要。
-
公开(公告)号:CN109165300B
公开(公告)日:2020-08-11
申请号:CN201811014746.2
申请日:2018-08-31
Applicant: 中国科学院自动化研究所
IPC: G06F16/36 , G06F40/30 , G06F40/279
Abstract: 本发明属于自然语言技术领域,具体提供了一种文本蕴含识别方法及装置,旨在解决现有技术在文本蕴含识别过程中存在大量噪声的问题。为此目的,本发明提供了一种文本蕴含识别方法,包括获取待识别文本蕴含句对中源句子和目标句子的词汇向量集合,利用预设的第一感知器获取源(目标)句子中每个词与目标(源)句子之间的比较向量;基于预设的语义关系推理模型获取源(目标)句子中每个词与目标(源)句子之间的推理向量;利用预设的第二感知器获取推理向量对应的门结构权重;根据推理向量和门结构权重进行加权融合,将加权融合的结果用于预测文本蕴含句对的语义蕴含关系。基于上述步骤,本发明提供的方法同样具有提高预测结果准确率的有益效果。
-
公开(公告)号:CN111445542A
公开(公告)日:2020-07-24
申请号:CN202010246799.8
申请日:2020-03-31
Applicant: 中国科学院自动化研究所
Abstract: 本发明属于脑机接口技术领域,具体涉及一种基于弹性突触门的跨受试者神经解码系统、方法、装置,旨在解决在特定受试者上独立训练的神经解码在跨受试者解码时准确率较低的问题。本系统包括:预处理模块,配置为获取待解码的功能性核磁共振图像并进行预处理,得到预处理图像;解码模块,配置为通过基于弹性突触门的解码模型对所述预处理图像进行解码,得到在采集功能性核磁共振图像时受试者受到的刺激的向量表示;其中,基于弹性突触门的解码模型基于多层前向神经网络构建。本发明提高了基于功能性核磁共振成像的神经解码在跨受试者解码时的准确率。
-
公开(公告)号:CN107943795B
公开(公告)日:2020-05-19
申请号:CN201711123864.2
申请日:2017-11-14
Applicant: 中国科学院自动化研究所 , 波音(中国)投资有限公司
Abstract: 本发明涉及机器翻译领域,具体涉及一种提高神经机器翻译准确度的方法、翻译方法及系统和设备,目的在于减少神经机器翻译系统的漏翻和重翻问题。本发明提出的提高神经机器翻译准确度的方法,通过将统计机器翻译中常用的预处理方法即预调序,引入到神经机器翻译中,实现了意想不到的技术效果——大大缓解了漏翻和重翻问题。另外,在神经机器翻译的注意力层加入位置向量以增强单调翻译,加入覆盖度向量,进一步缓解漏翻和重翻问题。相对于现有的神经机器翻译方法,本发明在提高翻译质量以及减少漏翻重翻方面均有显著改进。
-
公开(公告)号:CN110096567A
公开(公告)日:2019-08-06
申请号:CN201910192600.5
申请日:2019-03-14
Applicant: 中国科学院自动化研究所
IPC: G06F16/31 , G06F16/33 , G06F16/332
Abstract: 本发明属于自然语言处理领域,具体涉及一种基于QA知识库推理的多轮多话回复选择方法、系统,旨在解决人机多轮对话交互系统中回复选择的问题。本发明方法包括:以当前多轮对话提取的关键词、当前输入作为问题从QA知识库中检索出候选问题集合,并获取相应的上下文,构建候选多轮对话集合;计算当前输入与候选问题的语义相似度为第一相似度;计算当前输入的上下文与各候选问题上下文的语义相似度为第二相似度;计算当前多轮对话与各候选多轮对话的摘要信息的相似度为第三相似度;三个相似度加权求和得到各候选问题与当前输入的相似度,将相似度最大的候选问题对应的回复作为输出回复。本发明可以有效提高回复语句的质量,增强用户体验。
-
公开(公告)号:CN109783704A
公开(公告)日:2019-05-21
申请号:CN201910005704.0
申请日:2019-01-03
Applicant: 中国科学院自动化研究所 , 出门问问信息科技有限公司
IPC: G06F16/9032
Abstract: 本发明属于人机对话技术领域,具体涉及一种人机混合的应答方法、系统、装置,旨在为了解决现有人机应答方法无法实现在线学习的问题。本发明方法包括:对当前对话上下文Ct进行编码,得到第一表征向量E(Ct);基于对话任务下的候选回复语句,并进行编码后得到第二表征向量 基于第一表征向量E(Ct)、第二表征向量通过不确定性估计方法获取候选回复语句能够正确回复用户提问的置信度,置信度大于设定阈值则选择置信度对应的候选回复语句进行应答输出,否则获取通过人机交互设备录入的回复语句或选定的候选回复语句进行应答输出,并基于应答输出后得到的全部对话语句进行上述步骤中的参数优化。本发明保证了输出的应答语句具有足够的置信度,实现了对话模型的在线学习更新。
-
公开(公告)号:CN109508400A
公开(公告)日:2019-03-22
申请号:CN201811172666.X
申请日:2018-10-09
Applicant: 中国科学院自动化研究所
IPC: G06F16/583 , G06F16/36 , G06K9/62 , G06N3/04
Abstract: 本发明属于自然语言技术领域,具体提供了一种图文摘要生成方法,旨在解决现有技术图片和文本不对齐导致摘要信息不准确的问题。为此目的,本发明提供了一种图文摘要生成方法,包括获取多媒体信息中文本和图片对应的特征向量;根据文本和图片对应的特征向量获取多模态信息向量;基于预先构建的摘要生成模型并根据多模态信息向量获取多媒体信息的文本摘要;根据图片对应的特征向量获取图片对应的覆盖度向量;基于摘要生成模型并根据图片对应的覆盖度向量获取多媒体信息的图片摘要;将文本摘要和图片摘要结合作为多媒体信息的图文摘要。基于上述步骤,本发明提供的方法可以得到更准确表现多媒体信息内容的图文摘要。
-
公开(公告)号:CN105955956B
公开(公告)日:2019-01-22
申请号:CN201610294189.9
申请日:2016-05-05
Applicant: 中国科学院自动化研究所
Abstract: 本发明公开了一种汉语隐式篇章关系识别方法,所述方法包括以下步骤:步骤1,对汉语隐式篇章关系论元对进行自动分词处理,得到自动分词结果;步骤2,在得到的汉语隐式篇章关系论元自动分词结果的基础上,学习汉语隐式篇章关系论元的特征表达;步骤3,基于得到的特征表达,通过基于最大间隔的神经网络模型对论元间的汉语隐式篇章关系进行建模;步骤4,利用得到的神经网络模型对汉语隐式篇章关系进行识别。本发明能够对汉语中的隐式篇章关系进行较准确地识别。经过在汉语篇章树库上的实验验证,相对于已有的英语隐式篇章关系识别方法,本发明方法在汉语隐式篇章关系识别上得到准确率更高的识别结果。
-
公开(公告)号:CN109241993A
公开(公告)日:2019-01-18
申请号:CN201810832903.4
申请日:2018-07-26
Applicant: 中国科学院自动化研究所
Abstract: 本发明属于情感分类技术领域,具体提供了一种融合用户和整体标签信息的评价对象情感分类方法及装置。旨在解决现有技术不考虑不同用户的差异性和忽略整体评价信息导致对评价对象情感极性评价不准确的问题。本发明提供了一种融合用户和整体评价信息的评价对象情感分类方法,包括基于预先获取的评论信息以及相应的用户信息和整体评价信息得到评论向量;基于预先构建的评价对象情感分类模型并根据预设的评价对象,对评论向量进行情感预测,得到每个评价对象对应的情感极性。本发明的方法全面考虑了用户信息和整体评价信息对评价对象情感分类的影响,相对于其他方法提升了预测的准确率。本发明的装置同样具有上述有益效果。
-
-
-
-
-
-
-
-
-