一种基于多任务学习的知识图谱链接预测方法、计算机设备及存储介质

    公开(公告)号:CN116843026A

    公开(公告)日:2023-10-03

    申请号:CN202310620744.2

    申请日:2023-05-29

    Abstract: 一种基于多任务学习的知识图谱链接预测方法、计算机设备及存储介质,涉及知识图谱补全领域。解决现有InteractE模型存在的平移特性被破坏的问题。本发明提供以下方案,对知识图谱数据集进行预处理生成逆关系三元组,将得到的逆关系三元组的知识图谱数据集作为输入;构建基于多任务学习的知识图谱链接预测模型;在所述预测模型的训练集上进行迭代训练;将验证集中待预测逆关系三元组的头实体和关系输入到所述模型中,得到InteractE模型作为解码器的全部尾实体的预测得分,将测试集中待预测三元组的头实体和关系输入加载模型参数的模型中,预测得分最高的尾实体作为输出。适用于知识图谱中已经存在的头实体和关系信息预测缺失的尾实体的方法中。

    一种满足本地差分隐私的基于方向感知的轨迹数据采集方法及系统

    公开(公告)号:CN116669015A

    公开(公告)日:2023-08-29

    申请号:CN202310379571.X

    申请日:2023-04-11

    Abstract: 本发明提出了一种满足本地差分隐私的基于方向感知的轨迹数据采集方法及系统,首先通过基于锚的空间约束方法,对用户的轨迹区域进行自适应的限制,从而在不违反隐私约束的情况下显著提高性能;其次利用隐私预算将轨迹中每个点的相邻方向信息离散化用于该点的扰动过程;这种信息用作连接相邻点的线索,并且可以用于限制轨迹中每个点的区域;最后利用指数机制和优化进程得到最终经过扰动的轨迹并上传给服务器;本发明满足严格的本地差分隐私,为移动用户轨迹数据提供可证明的隐私保护,且不需要访问额外的公开知识,通过使用本方法解决了轨迹数据采集过程中的隐私泄露问题。

    一种基于对比学习的解耦合负采样方法及其系统

    公开(公告)号:CN116340647A

    公开(公告)日:2023-06-27

    申请号:CN202310165758.X

    申请日:2023-02-27

    Abstract: 本发明公开了一种基于对比学习的解耦合负采样方法及其系统。与传统的负采样方法将物品视为一个整体的策略不同,本发明指出了用户的交互仅由物品的某些相关因素驱动,而并不是物品整体。本发明利用了门控网络解耦合物品的相关因素和非相关因素,综合考虑了两种因素选择出最合适的负样本,用于训练隐式协同过滤模型。同时基于对比学习的思想提出了四个对比任务,用于确保解耦合的准确度。作为一种新颖的采样策略,本发明能够完美地兼容各种隐式协同过滤模型。由于本发明充分考虑了用户交互的形成特性,利用门控网络提供了解耦方向,以及提出了对比学习任务确保解耦精度,隐式协同过滤模型的性能有着大幅提升。

    一种融合节点属性和图结构的半监督社区发现方法

    公开(公告)号:CN110442800B

    公开(公告)日:2022-05-20

    申请号:CN201910659962.0

    申请日:2019-07-22

    Abstract: 一种融合节点属性和图结构的半监督社区发现方法,属于网络分析技术领域。包括以下步骤:1)计算m个属性的信息熵;2)计算属性相似度;3)利用Jaccard相似度计算结构相似度;4)计算属性和结构总的相似度;5)寻找K个初始社区;6)初始化初始社区矩阵;7)结合半监督方法计算出社区划分矩阵;8)计算平衡值(trade‑off)分析参数的合理取值范围9)根据trade‑off和模块度获得最优的模块度及社区发现结果。本发明通过不断调节算法中涉及的参数来得到一种合理地划分方式,并最后给出对于社区发现最优结果以及算法参数合理范围;融合属性进行社区发现,给出了属性所占比例的合理范围,社区发现模块度和紧密度得到提高。

    一种单位圆盘图上的最大独立集近似求解方法

    公开(公告)号:CN110489804A

    公开(公告)日:2019-11-22

    申请号:CN201910659827.6

    申请日:2019-07-22

    Abstract: 本发明公开了一种单位圆盘图上的最大独立集近似求解方法,包括以下步骤:步骤1:利用动态规划方法设计一种单位圆盘顶点的相邻顶点集诱导子图的最大顶点独立集的最优解求解方法,并给出任意两顶点相邻顶点集并集诱导子图的最大顶点独立集的最优解;步骤2:针对一般的单位圆盘图,首先计算顶点支配独立集;之后对顶点支配独立集中成员进行单独检查,判断结果是否可优化,得到中间解;最后对中间解中成员进行联合检查,判断结果是否可优化,得到最终解。本发明以O(Δ2n3)的计算时间复杂度得到近似比为1.5的近似解,其中Δ为顶点最大度,相比单位圆盘图上最大独立集求解问题的现有近似算法,本发明提高了近似比,具有更高的效率。

Patent Agency Ranking