一种专利文本新颖性/创造性预测方法及装置

    公开(公告)号:CN113836261A

    公开(公告)日:2021-12-24

    申请号:CN202110998664.1

    申请日:2021-08-27

    Abstract: 一种专利文本新颖性/创造性预测方法及装置,涉及自然语言处理中的文本匹配技术,目的是为了对专利申请文件的新颖性和/或创造性进行初步的预测判断。所述方法包括:利用主题模型对待预测专利文本与授权专利文本进行处理,得到各关键词的主题分布;计算各专利文本的各关键词的主题分布平均值;利用BERT模型对待预测专利文本与授权专利文本进行处理;将各专利文本的各关键词的主题分布的平均值和BERT模型的输出进行拼接,然后输入至全连接层;利用激活函数对全连接层的输出进行计算,得到待预测专利文本具备新颖性/创造性的概率。所述装置包括主题模块、主题分布平均值计算模块、BERT模块、拼接模块和概率计算模块。

    基于词向量表示和分类器联合训练的跨语言文本分类方法

    公开(公告)号:CN108960317B

    公开(公告)日:2021-09-28

    申请号:CN201810680474.3

    申请日:2018-06-27

    Abstract: 基于跨语言词向量表示和分类器联合训练的跨语言文本分类方法,本发明涉及跨语言文本分类方法。本发明的目的是为了解决现有基于同义词替换的方法分类准确率低,现有基于翻译的方法准确率较高,但是训练翻译器需要大量的语料,而且训练耗时较长,任务的复杂性与时间消耗远远超过了文本分类这一较为简单的任务,因此并不实用的问题。过程为:一:语料预处理:二:通过梯度优化方法优化总的损失函数,使总的损失函数达到最小值,对应一组词向量和一个分类器;三:取概率最大的标签作为目标端语言T上的测试文本的分类结果;与测试集的标准结果对比,得到测试准确率和召回率指标。本发明用于跨语言文本分类领域。

    一种面向全局的机器阅读理解建模中的候选答案筛选方法

    公开(公告)号:CN108960319B

    公开(公告)日:2019-12-03

    申请号:CN201810700571.4

    申请日:2018-06-29

    Abstract: 本发明提出了一种面向全局的机器阅读理解建模中的候选答案筛选方法,属于计算机信息筛选技术领域。所述方法将问题对应的所有段落作为候选答案片段定位范围,首先,获取段落的文本片段间的F1值,利用F1筛选出最佳候选答案片段,另一方面,提取段落和问题之间的特征后,利用逻辑回归模型进行相关性打分处理后,根据分数获得筛选后的候选答案段落集合,然后判断所述最佳候选答案片段所在段落是否将所述候选答案段落集合中,并将所述最佳候选答案片段所在段落强制放在所述候选答案段落集合的首位,最终输出所述最佳候选答案片段和所述候选答案段落集合。所述方法具有提高训练和预测效率等优点。

    一种基于机器翻译的中文语义知识库的构建方法

    公开(公告)号:CN105677913B

    公开(公告)日:2019-04-26

    申请号:CN201610111365.0

    申请日:2016-02-29

    Abstract: 一种基于机器翻译的中文语义知识库的构建方法,本发明涉及中文语义知识库的构建的方法。本发明是要解决中文语义知识库匮乏的问题、现有技术昂贵的人力及时间的问题,和提高基于跨语言映射的语义知识库翻译的性能的问题,而提出的一种基于机器翻译的中文语义知识库的构建方法。该方法是通过一、得到标注了实体的源语言端语料;二、根据主题模型计算得到实体的主题分布;三、根据源语言端实体词表从短语翻译表中抽取源语言端语义知识库中实体的翻译概率,记为p(tj|si);四、构建基于源语言端语义知识库图结构信息的实体翻译模型等步骤实现的。本发明应用于中文语义知识库的构建领域。

    基于多语平行语料的语义向量的机器翻译方法

    公开(公告)号:CN106202068B

    公开(公告)日:2019-01-22

    申请号:CN201610590241.5

    申请日:2016-07-25

    Abstract: 基于多语平行语料的语义向量的机器翻译方法,本发明涉及机器翻译方法。本发明是要解决双语平行语料获得的语义信息通常较少的问题。本发明是通过一、输入平行的源语言1、2以及目标语言;二、根据公式(1)到公式(6)计算得到隐状态h′和h″;三、计算得到的向量c,四、生成目标语言;或者一、输入源语言1、2以及目标语言;二、计算向量c1和向量c2的归一化之后的余弦距离;三、衡量向量c1和向量c2的相似性;四、令dis(c1,c2)大于阈值δ;给定源语言1句子集合S1和源语言2句子集合S2,即表示为如下约束最优化问题:五、建立最终目标函数等步骤实现的。本发明应用于机器翻译领域。

    一种面向全局的机器阅读理解建模中的候选答案筛选方法

    公开(公告)号:CN108960319A

    公开(公告)日:2018-12-07

    申请号:CN201810700571.4

    申请日:2018-06-29

    Abstract: 本发明提出了一种面向全局的机器阅读理解建模中的候选答案筛选方法,属于计算机信息筛选技术领域。所述方法将问题对应的所有段落作为候选答案片段定位范围,首先,获取段落的文本片段间的F1值,利用F1筛选出最佳候选答案片段,另一方面,提取段落和问题之间的特征后,利用逻辑回归模型进行相关性打分处理后,根据分数获得筛选后的候选答案段落集合,然后判断所述最佳候选答案片段所在段落是否将所述候选答案段落集合中,并将所述最佳候选答案片段所在段落强制放在所述候选答案段落集合的首位,最终输出所述最佳候选答案片段和所述候选答案段落集合。所述方法具有提高训练和预测效率等优点。

Patent Agency Ranking