-
公开(公告)号:CN116489199A
公开(公告)日:2023-07-25
申请号:CN202310413111.4
申请日:2023-04-18
Applicant: 之江实验室
IPC: H04L67/125 , G07C9/38 , H04L67/10 , H04L67/1017 , G16Y40/30 , G16Y40/35 , G16Y20/10 , G16Y40/10
Abstract: 本发明公开了一种基于分布式物联网网关的联动执行指令的方法和装置,该方法首先创建一个包括条件和下发指令的联动场景;然后将联动场景下发到下发指令的分布式物联网网关上,并建立与条件相关的触发条件数据点位的映射点位,触发条件数据点位值发生变化后立即上报到映射点位,并立即判断联动场景的条件,当联动场景的条件满足触发值后,在同一分布式物联网网关中立即下发执行指令;最后采用轮询机制对联动场景进行轮询,当条件满足触发值时,立即下发执行指令。本发明有效提升了物联网联动策略的触发效率,同时联动指令不需要从物联网平台下发,直接从分布式物联网网关立即对被触发的联动设备进行执行,从而大大提升了联动执行指令的效率。
-
公开(公告)号:CN116453003A
公开(公告)日:2023-07-18
申请号:CN202310701408.0
申请日:2023-06-14
IPC: G06V20/17 , G06V20/10 , G06V10/82 , G06V10/22 , G06V10/26 , G06V10/28 , G06V10/56 , G06N3/0464 , G06N3/08 , G06Q50/02
Abstract: 本发明一种基于无人机监测智能识别水稻生长势的方法,包括:获取水稻小区图像,对图像进行标注,建立深度卷积神经网络检测模型,使用标注的水稻小区图像对模型进行优化训练,将待检测的水稻小区图像输入训练好的模型中,检测每张图像中水稻小区目标框的位置;选取每张水稻小区图像中最大面积的目标框,对目标框中的水稻小区图像进行预处理;计算预处理后的水稻小区图像的植被覆盖率,按照植被覆盖率高低判定水稻小区生长势的级别。本发明还提供了一种基于无人机监测智能识别水稻生长势的系统。本发明方法简单,在水稻生长势的识别方面精度高,速度快,成本低,能够广泛应用于农业的自动化、智能化生产管理中。
-
公开(公告)号:CN112528960B
公开(公告)日:2023-07-14
申请号:CN202011588312.0
申请日:2020-12-29
Applicant: 之江实验室
IPC: G06V40/20 , G06V10/46 , G06V20/52 , G06V10/764 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: 本发明属于视频行为分析技术领域,涉及一种基于人体姿态估计和图像分类的吸烟行为检测方法,首先读取检测区域监控视频,对视频帧进行预处理和归一化,然后采用YoloV3目标检测方法进行人体框检测,得到人体框位置坐标,在视频帧上面进行剪裁,得到需要进行人体姿态估计的子图,再以所述子图作为输入,使用改进后的人体姿态估计的方法AlphaPose进行人体关键点检测提取,通过定位嘴部和左、右手腕关键点,截取相应的局部图像块,制作分类网络数据集,设计图像分类网络模型,进行网络训练,得到吸烟分类模型,再采用训练好的模型对实时图像进行分类判断,得到视频的吸烟行为检测结果。本发明较好的弥补了两种方法的不足,同时改进算法,提升了检测效率。
-
公开(公告)号:CN116071239A
公开(公告)日:2023-05-05
申请号:CN202310202482.8
申请日:2023-03-06
Applicant: 之江实验室
IPC: G06T3/40 , G06T5/50 , G06N3/0455 , G06N3/0464 , G06N3/08
Abstract: 本发明公开一种基于混合注意力模型的CT图像超分辨方法和装置,该方法包括:步骤一,获取已有的医学CT图像公开数据集和植物的原始高分辨率CT图像;步骤二,对所述植物的原始高分辨率CT图像进行多方式联合的实用退化操作,后构造高低分辨率图像数据对;步骤三,利用已有的医学CT图像公开数据集进行混合注意力模型的训练,训练完成后,继续使用高低分辨率图像数据对进行模型训练调整,得到最终调整好的混合注意力模型;步骤四,利用最终调整好的混合注意力模型,输入植物的低分辨率原始CT图像,输出目标高分辨率图像。本发明适用于农业中的CT图像,针对植物组织丰富的特点,实现植物组织的无损高精度检测和超分辨重建。
-
公开(公告)号:CN116030502A
公开(公告)日:2023-04-28
申请号:CN202310323821.8
申请日:2023-03-30
IPC: G06V40/10 , G06V10/82 , G06V10/774 , G06V10/762 , G06N3/08 , G06N3/0464
Abstract: 本发明公开的一种基于无监督学习的行人重识别方法和装置,通过无监督行人重识别行人重识别模型前向传播获取样本的特征向量,利用聚类算法给未标注数据集中每个样本分配类别标签并保存每个聚集的中心向量;在每个样本中,基于当前样本的特征向量及类别标签,通过计算该特征向量均值与聚类中心的距离进行有监督的学习,计算新的聚类中心的中心向量,并更新行人重识别神经网络模型的权重参数,继续下一次迭代,直到收敛。本发明实现了在无标签数据集上的伪标签自动生成,增强了模型对于噪声数据的鲁棒性,大大减小了存储器对于内存空间的高额要求;均值采样计算的方法加快了模型参数更新速度,提高训练效率,提升模型应用的泛化能力。
-
公开(公告)号:CN116030272A
公开(公告)日:2023-04-28
申请号:CN202310323818.6
申请日:2023-03-30
IPC: G06V10/44 , G06V10/82 , G06V10/774
Abstract: 本发明属于人工智能算法技术领域,涉及一种基于信息抽取的目标检测方法、系统和装置,该方法包括:步骤一,对原始输入图片进行序列化处理,得到图片序列,即将图片按行或列转换成两组序列:行序列和列序列;步骤二,对行序列和列序列进行标签标注,得到对应序列的真实标签;步骤三,利用所述真实标签,输入所述的图片序列,训练一个基于循环神经网络的信息抽取模型,对行序列和列序列分别进行目标信息的抽取,得到行序列和列序列的预测标签;步骤四,根据行序列和列序列的预测标签,确定目标在图片中的位置。本发明利用序列信息抽取的方法来进行目标检测,能够提取原始图片的全局信息进行目标检测,同时不需要生成侯选框,提高算法的精度和效率。
-
公开(公告)号:CN115810134A
公开(公告)日:2023-03-17
申请号:CN202310110512.2
申请日:2023-02-14
Applicant: 之江实验室
IPC: G06V10/764 , G06V20/70 , G06V10/10 , G06V20/62 , G06V10/74 , G06Q30/018 , G06Q40/08
Abstract: 本发明公开了一种车险反欺诈的图像采集质检方法、系统和装置,所述方法由车险理赔质检终端和车险理赔质检服务器执行,包括:通过车险理赔质检终端收集并识别分类包括车损情况、车辆信息、场景信息、驾驶员信息、三方信息在内的图像信息,对图像信息进行筛选,并对筛选后的图像信息进行标注;将标注后的图像信息发送至车险理赔质检服务器,以使车险理赔质检服务器执行图像质检,得到质检结果;险理赔质检服务器将质检结果返回至车险理赔质检终端。本发明方法能够在信息收集的过程中,完成车险现场数据的标注和识别,从收集端规范了数据的采集,提高了图像采集的质量。
-
公开(公告)号:CN114972947A
公开(公告)日:2022-08-30
申请号:CN202210882622.6
申请日:2022-07-26
Applicant: 之江实验室
IPC: G06V10/80 , G06V10/82 , G06V20/70 , G06V30/148 , G06V30/19 , G06V10/764 , G06V10/28
Abstract: 本发明公开了一种基于模糊语义建模的深度场景文本检测方法和装置,该方法包括:步骤一,获取现有的用于训练场景文本检测的多组具有真值标注的图像数据集;步骤二,对数据集中的图像进行特征学习与全局特征融合,得到融合的全局特征图;步骤三,对融合的全局特征图进行像素级别语义分类,同时通过数值回归预测像素级别的语义可靠性,在全监督下进行多分支的联合优化,完成端到端联合学习框架的构建;步骤四,使用端到端联合学习框架,预测图像中的模糊语义信息,并利用可靠性分析及融合获得文本属性图;步骤五,对文本属性图进行二值化和联通域提取,得到最终的文本检测结果。本发明实现方法简便,灵活鲁棒,适用范围广。
-
公开(公告)号:CN114757832A
公开(公告)日:2022-07-15
申请号:CN202210663897.0
申请日:2022-06-14
Applicant: 之江实验室
Abstract: 本发明公开一种基于交叉卷积注意力对抗学习的人脸超分辨方法和装置,该方法将原始低分辨率图像输入人脸超分辨生成网络,经过卷积层、若干个全局残差通道注意力单元、粗上采样模块、两批局部残差通道注意力单元、精上采样模块,得到目标分辨率图像,再通过索贝尔算子获得边缘信息,通过低倍率降采样处理并反馈到主网络中进一步提高超分辨效果,利用小波变换将目标分辨率图像、真值图像和其他通过数据增强方式得到的图像进行分解,每个图像分解成一个低频信息、两个中频信息和一个高频信息,然后去掉低频信息,融合中频和高频信息,将其送到对抗网络进行判别,最后引入数据增强方法,以产生多个正负样本进行对抗网络与人脸超分辨网络的迭代优化。
-
公开(公告)号:CN113298890B
公开(公告)日:2022-07-15
申请号:CN202110527552.8
申请日:2021-05-14
Abstract: 本发明公开了非尺度混叠及边缘保留的图像多尺度分解方法及调色方法,在图像中,通过定义新型局部均值包络像素点,采取三次插值算法,获取自适应局部均值曲面,从而迭代操作获得多尺度图像分解,可以实现同时具有边缘保留和非尺度混叠双特性的图像多尺度分解,以得到含有不同尺度信息的高精度的精准的图像解析,对解析的各分量采用设定的线性或非线性算子操作,进一步可以实现灰度图像和彩色图像的多尺度调色处理。本发明的效果和益处是,提供了一种有效的同时具有边缘保留和非尺度混叠双特性的图像多尺度分解算法,可以同时实现无振铃现象和非尺度混合的图像分解以及在此基础上的多尺度调色应用。
-
-
-
-
-
-
-
-
-