一种基于光纤的微小粒子移动装置

    公开(公告)号:CN104698533A

    公开(公告)日:2015-06-10

    申请号:CN201510102629.1

    申请日:2015-03-09

    CPC classification number: G02B6/036 G02B6/3809

    Abstract: 本发明具体涉及一种基于光纤的微小粒子移动装置。基于光纤的微小粒子移动装置,包括激光光源1、标准单模光纤3、光纤对准器2和具有合适端面形状的多芯光纤4,光源1注入单模光纤3的光经过光纤对准器2耦合至多芯光纤4的一个芯,在多芯光纤4的端面处发生折射或反射后以第一空间角度照射到溶液中。本发明基于光的热效应的捕获和操控,可用于对微小粒子的批量大范围操纵;从多芯光纤出射的光束在溶液中沿直线传播,光的热效应沿着出射光束直线向前分布,这可以使受热效应作用聚集的微小粒子沿着出射光束呈线型规则排布。

    一种微光纤光开关
    112.
    发明公开

    公开(公告)号:CN104678594A

    公开(公告)日:2015-06-03

    申请号:CN201510054135.0

    申请日:2015-01-30

    CPC classification number: G02F1/0115

    Abstract: 本发明属于光纤技术领域,特别涉及一种微光纤光开关。一种微光纤光开关,包括用于控制开关通断的控制光源、用于通信的信号光源、适用于控制光和信号光波长的波分复用器、具有耦合区的第一光纤、以及在耦合区上镀有可以吸收特殊波长吸收膜的第二光纤组成。这种光纤光开关具备结构简单且尺寸小、可重复性高、抗造效果好等诸多优点。

    一种光纤光开关
    113.
    发明公开

    公开(公告)号:CN104678546A

    公开(公告)日:2015-06-03

    申请号:CN201510054141.6

    申请日:2015-01-30

    Abstract: 本发明属于光纤通信领域,特别涉及一种光纤光开关。一种光纤光开关,拉锥光纤的锥形区镀有吸光膜,拉锥光纤固定在毛细管的内侧壁上,在毛细管中的液体封存混合吸光粒子;从信号光源出射的信号光和控制光源出射的控制光通过波分复用器同时注入光纤中,控制光经过锥形区时被吸光膜吸收。本发明提出的光纤光开关,结合了液体中的热对流现象,不但成本极低,而且在结构上充分的体现了光纤尺寸小的优点。将热对流效应与光吸收结合在一起,实现光开关的新结构,与现有的光开关相比,具有尺寸小、操控力强、无需接触且无损伤等优点。

    一种全方位智能家具喷漆机器人

    公开(公告)号:CN104260076A

    公开(公告)日:2015-01-07

    申请号:CN201410498809.1

    申请日:2014-09-26

    Abstract: 本发明的目的在于提供一种全方位智能家具喷漆机器人,包括XYZ三轴平动机构、Y轴转动机构、喷枪、支撑框架机构等;Z轴移动机构通过Z轴安装板上的滑块安装到车身的滑道内,采用丝杠螺母进行驱动实现沿Z轴的直线运动,Y轴移动机构通过Y轴安装板安装到Z轴安装板上,采用齿轮齿条进行驱动实现沿Y轴直线运动,X轴移动机构通过两只光杆安装到Y轴安装板上,采用齿轮齿条进行驱动实现沿X轴的直线运动,Y轴转动机构通过螺栓安装到X轴滑块上,采用舵机驱动实现沿Y轴的转动。整体实现了机器人喷枪空间四自由度运动。本发明的可以对整体家具进行全方位喷漆,克服了一般喷漆机只能采用固定流水线作业对面板式,平面家具进行喷漆等缺点。

    四芯光纤组合光镊及其光栅动力控制方法

    公开(公告)号:CN101887147B

    公开(公告)日:2012-05-23

    申请号:CN201010197472.2

    申请日:2010-06-11

    Inventor: 苑立波 张羽 杨军

    Abstract: 本发明提供的是一种四芯光纤组合光镊及其光栅动力控制方法。在四芯光纤的四根纤芯上预先写入光栅常数不同的两组光纤光栅,四芯光纤的一端与标准单模光纤的一端以热熔融拉椎的方式耦合连接,标准单模光纤的另一端通过波分复用器与两个激光光源连接,四芯光纤的另一端采用精细研磨的方式加工制备成椎体结构。调节两激光光源的输入光功率,改变两组光路中光功率的比例,实现吞吐操作。本发明将四个光波导集成于一根光纤中,在节约了物理空间的同时,大幅降低系统输入光功率,可减小对待捕获粒子的伤害;四芯光纤组合光镊对微粒的捕获更加灵活、准确,具备可调节性,大大提高了光纤组合光镊技术的实用性。

    基于多芯保偏光纤的阵列式光镊及其制备方法

    公开(公告)号:CN101907742A

    公开(公告)日:2010-12-08

    申请号:CN201010203486.0

    申请日:2010-06-21

    Abstract: 本发明提供的是一种基于多芯保偏光纤的阵列式光镊及其制备方法。包括多芯保偏光纤、标准单模光纤和激光光源,激光光源与标准单模光纤的一端连接,标准单模光纤的另一端与多芯保偏光纤之间熔融拉椎耦合连接,多芯保偏光纤的另一端经熔融拉椎加工制备成椎体形状。本发明将多个光波导纤芯集成于一根光纤中,在节约了物理空间的同时,可大幅降低系统输入光功率,减小对待捕获粒子的伤害;同时,多芯光纤组合光镊对微粒的捕获更加灵活、准确,具备可调节性,大大提高了光纤光镊技术的实用性;更为重要的是该阵列式光纤光镊可以在光纤端形成致密的干涉网格光场阵列,在相干加强点形成光学势阱对粒子实现筛选等功能。

    三芯光纤光学微手及其控制方法

    公开(公告)号:CN101893737A

    公开(公告)日:2010-11-24

    申请号:CN201010197496.8

    申请日:2010-06-11

    Abstract: 本发明提供的是三芯光纤光学微手及其控制方法。由三芯光纤、光纤光源、单模光纤、压电陶瓷相位调制器构成三芯光纤光学微手,光纤光源与单模光纤连接,单模光纤的另一侧通过熔融拉椎的方式与三芯光纤耦合连接,该三芯光纤再缠绕在压电陶瓷相位调制器上,经压电陶瓷相位调制器之后的三芯光纤的尖端再经精细研磨的加工方式加工出锥体尖端,通过压电陶瓷相位调制器改变三纤芯方向位移来调节输出光束的相位,进而对三芯光纤出射光场光阱力进行调节。本发明将三个光波导集成于一根光纤中,在节约物理空间的同时,大幅降低系统输入光功率,减小对待捕获粒子的伤害;对微粒的捕获更加灵活、准确,具备可调节性,大大提高了光纤光学微手技术的实用性。

    可实现微小粒子旋转的卫星式螺旋多芯光纤微光手及制法

    公开(公告)号:CN101881858A

    公开(公告)日:2010-11-10

    申请号:CN201010197343.3

    申请日:2010-06-11

    Inventor: 苑立波 张羽 杨军

    Abstract: 本发明提供的是一种可实现微小粒子旋转的卫星式螺旋多芯光纤微光手及制法。激光光源与标准单模光纤的一端连接,标准单模光纤的另一端与卫星式螺旋多芯光纤之间热熔融拉椎耦合连接构成第一热熔融拉椎位置,卫星式螺旋多芯光纤附着在光程改变装置上,经过光程改变装置的卫星式螺旋多芯光纤再次经过热熔融拉椎操作构成第二热熔融拉椎位置,卫星式螺旋多芯光纤的另一端经精细研磨的加工方式制成椎体形状。本发明在节约了物理空间的同时,可大幅降低系统输入光功率,以减小对待捕获粒子的伤害;对微粒的捕获更加灵活、准确,具备可调节性;可以在光纤端自然形成涡旋状光学势阱,使微粒实现旋转,实现该操纵粒子的马达功能。

    一种柔性结构调制型光栅的制作装置及其制作方法

    公开(公告)号:CN115685425B

    公开(公告)日:2025-04-25

    申请号:CN202211333442.9

    申请日:2022-10-28

    Abstract: 本发明公开了一种柔性结构调制型光栅的制作装置,包括包层溶液微流泵、芯液微流泵、包层溶液流通管道、芯液流通管道、溶液凝固池,芯液流通管道设置于包层溶液流通管道内并与包层溶液流通管道同轴设置,芯液流通管道的顶端与芯液微流泵连通,芯液流通管道的底端设置有芯液喷头,包层溶液流通管道的顶端与包层溶液微流泵连通,包层溶液流通管道的底端设置有包层溶液喷头,溶液凝固池设置于包层溶液喷头和芯液喷头的下方,溶液凝固池设置于位移调节台上。本发明采用上述结构的一种柔性结构调制型光栅的制作装置及其制作方法,使得柔性光栅生长的周期和长度受控,保证光栅具备良好的生物界面兼容性与较高的抗剪切力。

    一种基于光致生物微马达的虚拟边界光流控系统及其使用方法

    公开(公告)号:CN119827418A

    公开(公告)日:2025-04-15

    申请号:CN202510046206.6

    申请日:2025-01-13

    Abstract: 本发明属于光镊技术领域,具体涉及一种基于光致生物微马达的虚拟边界光流控系统及其使用方法,包括:光致生物微马达模块是利用全息光镊捕获数个莱茵衣藻所形成定向运输微粒的微马达,光致生物微马达模块利用莱茵衣藻形成的微流道对微粒定向运输;全息光镊模块包括连续激光器、光学透镜、空间光调制器、高NA物镜、二向色镜、照明光源、样品台以及位移台;微流控模块包括微通道层和玻璃基板组。本发明使用全息光镊捕获莱茵衣藻使其围绕焦点进行转动其鞭毛的摆动会在周围流体中产生稳定的流场,利用光致生物微马达作为驱动源,创建虚拟边界来引导和控制微流体的流动路径和微颗粒的运动轨迹,实现无物理障碍的精确操控。

Patent Agency Ranking