-
公开(公告)号:CN104973865B
公开(公告)日:2017-05-17
申请号:CN201510276618.5
申请日:2015-05-26
Applicant: 北京科技大学
IPC: C04B35/582 , C04B35/64
Abstract: 本发明属于陶瓷材料制备技术领域,涉及一种高导热氮化铝陶瓷的制备方法。本发明以氮化铝粉体为基本原料,采用稀土金属氟化物EuF3、LaF3、SmF3或其混合物为烧结助剂,烧结助剂稀土氟化物的加入量为氮化铝粉末质量的2%‑8%,经湿磨混合、干燥、成形、脱脂、烧结形成氮化铝陶瓷,所得氮化铝陶瓷热导率大于200W/m.K,抗弯强度大于320MPa,晶粒度细小的氮化铝陶瓷;本发明具有工艺简单,产品性能好,生产成本低等特点。
-
公开(公告)号:CN106636933A
公开(公告)日:2017-05-10
申请号:CN201611100966.8
申请日:2016-12-05
Applicant: 北京科技大学
CPC classification number: C22C38/08 , C21D1/18 , C21D2211/004 , C21D2211/005 , C22C33/0264 , C22C33/06 , C22C38/005 , C22C38/04 , C22C38/06 , C22C38/14 , C22C38/16
Abstract: 一种制备多相强化铁素体合金的方法,属于金属弥散强化技术领域,其工艺流程为:首先采用真空熔炼+电渣重熔双联的工艺来对合金铸锭进行纯净化。纯净化的铸锭进行喷射成形,以惰性高压气体和氧气的混合气体作为雾化介质,通过调节雾化介质中的氧分压来控制引入的氧含量,为合金中氧化物的形成提供氧元素。合金坯料进行热挤压,粉末颗粒表面的氧化膜在热挤压过程中破碎,重新分布,氧元素优先与稀土元素Y和Ti结合而形成Y‑O或Y‑Ti‑O氧化物弥散相。所得的铁素体合金是一种由L21型Ni2AlMn金属间化合物、NiAl金属间化合物、富Cu析出相和氧化物弥散相共同强化的合金。该方法解决了传统机械合金化工艺在制备弥散强化材料时效率低和金属、非金属夹杂含量高的问题,提高了材料综合力学性能。
-
公开(公告)号:CN106636702A
公开(公告)日:2017-05-10
申请号:CN201611100779.X
申请日:2016-12-05
Applicant: 北京科技大学
CPC classification number: C22C1/023 , B22F9/04 , C22C1/03 , C22C19/056
Abstract: 一种低氧含量高合金化镍基母合金及粉末的制备方法,属于粉末冶金领域,其工艺流程为:首先采用真空熔炼+电渣重熔的双联工艺制备纯净的母合金铸锭。在真空熔炼的过程中,采用氧化钙坩埚,并通过对原料进行预处理、精炼期加入碳块进行脱氧,在熔炼末期补充易烧损元素,得到设计成分的母合金铸锭。在电渣熔炼过程中,通过调节渣池的形状、深度、粘度等参数来创造非金属夹杂上浮的条件,使母合金进一步纯净化。对电渣重熔后的母合金铸锭去皮后,在保护气氛下对母合金铸锭进行高速盘磨破碎,得到超细母合金粉末。使用该方法制备的K418母合金粉末,粒径均小于20μm,氧含量低于200ppm,硫含量低于20ppm,与羰基镍粉混合后,能够在较低温度烧结致密化,大大降低粉末高温合金的生产成本与工艺能耗。
-
公开(公告)号:CN104725049B
公开(公告)日:2017-03-15
申请号:CN201510128024.X
申请日:2015-03-23
Applicant: 北京科技大学
IPC: C01B21/06 , C04B35/582 , C04B35/626
Abstract: 本发明公开了一种氮化铝/氮化硼复合陶瓷粉末的制备方法,属于陶瓷粉末制备技术领域。主要步骤为:采用铝源、硼源、胺类有机物、水溶性碳源和辅助剂为原料,按照一定比例配成溶液,加热并搅拌,溶液挥发、浓缩后发生反应,得到前驱体粉末;将前驱体粉末于1300-1700℃在流动的氮气气氛下反应2-4小时;将反应后的粉末在500-650℃的空气中加热1-3小时,得到氮化铝/氮化硼复合陶瓷粉末。本发明有利于在较低的反应温度条件下合成高纯度、高分散、细粒度的氮化铝/氮化硼复合陶瓷粉末,操作简单,成本低,易于产业化生产。
-
公开(公告)号:CN104492437B
公开(公告)日:2017-01-25
申请号:CN201410785069.X
申请日:2014-12-17
Applicant: 北京科技大学
IPC: B01J23/745
Abstract: 本发明公开了一种碳与氧化铁(α-Fe2O3)纳米复合材料的制备方法,属于无机材料合成领域。本发明采用铁源、碳源和辅助剂为原料,一步反应得到碳-氧化铁纳米复合材料,不需要任何后续处理,所制备的碳-氧化铁纳米催化剂碳与氧化铁实现纳米级复合,比表面积大,且具有介孔结构,对太阳光的利用率较高,催化性能好,可用于功能材料领域,特别是在光催化降解有机污染物领域。本发明原料易得,制备过程中不需要模板,不需要表面活性剂、沉淀剂等,工艺简单,生产成本低,易于大规模生产。
-
公开(公告)号:CN104372237B
公开(公告)日:2017-01-04
申请号:CN201410670952.4
申请日:2014-11-21
Applicant: 北京科技大学
Abstract: 本发明属于磁性材料领域,涉及一种高致密度和高磁性能粉末冶金铁硅铝磁体的制备方法。本发明通过添加有机粘结剂对铁硅铝粉末改性,压制成形,排胶处理,然后采用烧结加热等静压技术提高其致密度,通过后续热处理全面提高其磁性能。其中有机粘结剂采用聚乙烯醇、橡胶或石蜡等,排胶气氛为真空或氢气,排胶温度300-900℃,烧结温度在1200-1280℃,热等静压温度为1000-1150℃、压力100-150MPa、热等静压时间1-6h,热处理温度1150-1250℃,热处理时间2-10h。本发明提供的粉末冶金铁硅铝磁体,其致密度达到99%以上,磁性能与铸造磁体相当。
-
-
公开(公告)号:CN106159225A
公开(公告)日:2016-11-23
申请号:CN201610592630.1
申请日:2016-07-25
Applicant: 北京科技大学
IPC: H01M4/36 , H01M4/48 , H01M4/587 , H01M10/0525
CPC classification number: H01M4/364 , H01M4/483 , H01M4/587 , H01M10/0525
Abstract: 本发明涉及一种生产碳复合无定形氧化钒纳米粉末的方法,属于新能源领域。工艺过程为:采用钒源、燃料、辅助剂和碳源为原料,按照一定比例配成溶液;在一定气氛下对溶液进行加热,溶液经过挥发、浓缩形成凝胶后,发生燃烧合成反应。燃烧反应放出的热量可使反应自维持,最终得到碳复合无定形氧化钒粉末。反应过程中产生大量气体,不仅可有效防止产物粉末团聚,还可形成介孔结构。且由于利用液相混合,可实现粒度细小无定形氧化钒颗粒与碳的紧密结合与均匀分散。本发明原料易得,工艺简单,成本低,易于产业化,制备得到的碳复合无定形氧化钒粉末作为锂电负极材料时,兼具高容量和优异的循环稳定性。
-
公开(公告)号:CN104495847B
公开(公告)日:2016-08-24
申请号:CN201410785496.8
申请日:2014-12-17
Applicant: 北京科技大学
Abstract: 本发明涉及一种纳米碳化铁粉末的制备方法,属于纳米粉末制备技术领域。工艺过程为:(1)将硝酸铁、甘氨酸和碳源按照一定比例配成溶液;(2)加热并搅拌,溶液挥发、浓缩后分解,得到前驱体粉末;(3)将前驱体粉末于500~800℃温度范围内,在一定气氛下反应0.5?3小时。本发明工艺简单,成本低,易于产业化生产,得到的碳化铁粉末颗粒粒度小于30nm,分散性好。
-
公开(公告)号:CN104495825B
公开(公告)日:2016-08-24
申请号:CN201410784795.X
申请日:2014-12-17
Applicant: 北京科技大学
Abstract: 本发明公开了一种多孔纳米石墨的制备方法,属于纳米碳材料研究领域。主要步骤为:以水溶性碳源为原料,添加辅助剂和铁盐按照合适的比例配成溶液后加热;溶液挥发、浓缩后发生反应,得到含碳的前驱体粉末,将前驱体于600~1300℃在一定气氛下反应0.5?5小时后,将反应产物采用酸洗后得到多孔纳米石墨。本发明操作简单,成本低,易于产业化生产,所得的产物石墨化程度高且具有多孔结构,可以广泛应用到锂离子电池、场发射材料及超级电容器等诸多领域。
-
-
-
-
-
-
-
-
-