-
公开(公告)号:CN111014934A
公开(公告)日:2020-04-17
申请号:CN201911402573.6
申请日:2019-12-31
Applicant: 哈尔滨工程大学
Abstract: 本发明提供一种高能脉冲电流辅助超声波固结制备金属层状复合材料的方法,准备一种或多种金属箔材,清洗表面油污并烘干待用;将脉冲电流电源与超声波固结装备进行连接,保证脉冲电流正负极间带材/基板为唯一通路;采用同步耦合方式,在超声波固结过程中施加具有电流密度、频率的脉冲电场,完成单道次的金属箔材的固结;待步骤三完成后,按照需要重复步骤三过程,实现金属箔材的逐层累加固结,最终制备出不同厚度/层数的金属层状复合材料,得到高能脉冲电流辅助超声波固结制备金属层状复合材料。本发明所利用的脉冲电流的电致塑性效应与传统热效应提升材料塑性的方法有着本质性的不同,能够在极少温升情况下瞬时提升材料的塑性变形能力。
-
公开(公告)号:CN110170649A
公开(公告)日:2019-08-27
申请号:CN201910449285.X
申请日:2019-05-28
Applicant: 哈尔滨工程大学 , 营口中宝分子筛有限公司
Abstract: 本发明提供一种复合空心球的制备方法,包括如下步骤:采用涂覆的方法制备复合空心球素胚:制备面粉小球,以面粉小球为模板在其表面依次涂覆红瓷土粉末和金属粉末,从而获得复合空心球素胚;对复合空心球素胚进行烧结制备获得复合空心球;本发明通过在内部模板的基础上加入一层红瓷土,制备得到金属-红瓷土复合空心球,这是由于红瓷土熔点与金属相近,在烧结过程中可形成红瓷土壳体对外部金属起到支撑的作用,从而限制了外层金属在烧结过程中出现的破损、坍塌现象,从而可大幅度提高金属空心球的成品率。
-
公开(公告)号:CN109513929A
公开(公告)日:2019-03-26
申请号:CN201811582941.5
申请日:2018-12-24
Applicant: 哈尔滨工程大学
Abstract: 本发明提供的是一种壁厚均匀的金属空心球的批量制备方法。一、使用偶联剂对聚苯乙烯球形颗粒表面进行改性,将改性过的聚苯乙烯球形颗粒放入自动涂覆机的滚动装置内;二、使用自动涂覆机的喷嘴装置将金属粉末和粘结剂溶液喷洒到滚动装置内,通过转动将金属粉末涂覆到聚苯乙烯球形颗粒表面,得到金属空心球素胚;三、对金属空心球素胚进行烘干;四、将烘干后的金属空心球素胚,首先升温去除聚苯乙烯模板、再经过高温烧结得到金属空心球。本发明设计合理、操作步骤简便、生产成本低廉、生产效率高、可批量化生产。制备出的金属空心球具有尺寸均一、直径可控;球壳光滑、完整;壁厚较薄、均匀可控等优点。
-
公开(公告)号:CN109492277A
公开(公告)日:2019-03-19
申请号:CN201811251010.7
申请日:2018-10-25
Applicant: 哈尔滨工程大学
Abstract: 本发明提供一种估算金属增材制造超声冲击处理作用层深度的方法,作用层深度计算模型为:式中,rmax为作用层深度、υ为增材制造金属件泊松比、ρ为密度、E为弹性模量、f为超声换能器频率、A为变幅杆振幅、r0为冲击针半径、pin为冲击针、AM为被冲击材料、σp0.2为被冲击材料在高应变率条件下的压缩屈服强度。本发明的估算方法可以用来预测在特定“增材”与“锻造”成形参数下作用层深度,用于指导“超声波辅助增材制造”复合制造成形工艺制定,如逐层沉积层高度、线能量输入密度、UIT频率及振幅等,实现增材制造金属零部件组织和内应力的准确控制,解决现有增材制造技术成形金属构件控形、控性难题,获得和锻件性能相媲美的高性能金属零部件。
-
公开(公告)号:CN108796256A
公开(公告)日:2018-11-13
申请号:CN201810620893.8
申请日:2018-06-15
Applicant: 哈尔滨工程大学
Abstract: 本发明提供的是一种空心球与铝合金基隔声材料的制备方法。将经过清洗的不锈钢空心球与铝合金基体放入模具中,不锈钢空心球随机均匀分布在铝合金基体内,得到空心球和铝合金的预制体;将所述预制体与模具放入真空热压烧结炉中进行热压烧结;热压烧结后取出进行T7热处理。本发明的方法所得到的空心球与铝合金隔声材料既可实现空心球在基体内的均匀分布,又可控制隔声材料内的孔隙率。是一种可用于制备轻质高性能隔声材料的简便方法。
-
公开(公告)号:CN106476395B
公开(公告)日:2018-04-24
申请号:CN201610821139.1
申请日:2016-09-13
Applicant: 哈尔滨工程大学
Abstract: 本发明提供的是一种钛铜层状电极复合材料的快速制备方法。(1)将铜箔、铝箔与钛箔叠加构成单元体,将一个单元体放入超声波快速固结成型工作台上;(2)将超声波快速固结成型工作台基板预热升温到50℃~200℃之间,开始进行固结制备形成金属箔材;(3)再在金属箔材放置下一个单元体,采用与步骤(2)相同的参数进行固结制备形成金属箔材;(4)重复步骤(3)至达到预定厚度后,铣削去除边角废料,得到钛铜层状电极复合材料。本发明低温制造,节能环保;原材料价格便宜,固态物理冶金结合,扩散层薄,副产物少;无真空、气体保护装置、设备成本低;生产周期短,生产效率大大提高;精度高,成品率高。
-
公开(公告)号:CN107513674A
公开(公告)日:2017-12-26
申请号:CN201710725348.0
申请日:2017-08-22
Applicant: 哈尔滨工程大学
IPC: C22C47/02 , C22C47/20 , C22C49/11 , C22C49/06 , C22C49/14 , C22C101/14 , C22C111/00
Abstract: 本发明提供的是一种改善钛铝层状复合材料组织和提高力学性能的方法。对钨芯SiC陶瓷纤维进行预处理,对NiTi合金丝、Ti箔、Al箔进行超声波清洗,按照“Ti箔-钨芯SiC陶瓷纤维与NiTi合金丝-Al箔-Ti箔”为一个单元叠放,每2根NiTi合金丝之间放置4根SiC纤维,间距1mm,上下表面均为Ti层,利用真空热压装置对其进行烧结。本发明利用NiTi丝中镍和钛元素易与铝元素在低温下发生反应,形成金属间化合物的设计原理,通过真空热压烧结法将SiC纤维和NiTi合金丝同时引入到金属间化合物层中,其中SiC纤维作为增强体,而NiTi合金丝的引入是为了利用其与Al的充分扩散反应机理来消除金属间化合物层中心线,进而改善SiC纤维/基体界面,从而提高复合材料的力学性能。
-
公开(公告)号:CN106929776A
公开(公告)日:2017-07-07
申请号:CN201710086013.9
申请日:2017-02-17
Applicant: 哈尔滨工程大学
IPC: C22C47/20 , C22C47/04 , C23C18/16 , C23C18/36 , C22C101/14
CPC classification number: C22C47/20 , C22C47/04 , C23C18/1653 , C23C18/36
Abstract: 本发明提供的是一种提高SiC纤维增强Ti/Al3Ti金属间化合物层状复合材料界面强度的方法。SiC纤维先经过去胶、粗化、敏化、活化的预处理工艺之后,进行再经过化学镀镍和电镀镍;处理后的将SiC纤维均匀且分散地铺在Al箔表面,之后将TC4箔材和Al箔材交错排列并保证上下表面均为TC4箔片;进行热压烧结。为了解决纤维与基体之间的润湿性问题,本发明提出了一种SiC纤维先化学镀镍后电镀镍的工艺方法,之后将镀镍后的SiC纤维引入到Ti/Al3Ti金属间化合物基层状复合材料中,以此来提高纤维增强金属间化合物基层状复合材料的整体强度和塑韧性。
-
公开(公告)号:CN106476395A
公开(公告)日:2017-03-08
申请号:CN201610821139.1
申请日:2016-09-13
Applicant: 哈尔滨工程大学
CPC classification number: B32B37/02 , B32B37/00 , B32B37/06 , B32B38/162 , C25B11/0405 , C25B11/0478
Abstract: 本发明提供的是一种钛铜层状电极复合材料的快速制备方法。(1)将铜箔、铝箔与钛箔叠加构成单元体,将一个单元体放入超声波快速固结成型工作台上;(2)将超声波快速固结成型工作台基板预热升温到50℃~200℃之间,开始进行固结制备形成金属箔材;(3)再在金属箔材放置下一个单元体,采用与步骤(2)相同的参数进行固结制备形成金属箔材;(4)重复步骤(3)至达到预定厚度后,铣削去除边角废料,得到钛铜层状电极复合材料。本发明低温制造,节能环保;原材料价格便宜,固态物理冶金结合,扩散层薄,副产物少;无真空、气体保护装置、设备成本低;生产周期短,生产效率大大提高;精度高,成品率高。
-
公开(公告)号:CN106424741A
公开(公告)日:2017-02-22
申请号:CN201610821138.7
申请日:2016-09-13
Applicant: 哈尔滨工程大学
CPC classification number: B22F7/04 , B22F2007/045 , C22C1/05 , C22C21/00
Abstract: 本发明提供的是一种SiC颗粒增强金属间化合物基层状复合材料Ti/Al3Ti的制备方法。(1)将gAl粉、SiC粉末和硬脂酸在球磨机中球磨至混合均匀;(2)将球磨后的粉末加入到磨具中并采用粉末冶金方法制备出SiC颗粒增强铝基复合材料;(3)在450℃~500℃之间将SiC颗粒增强铝基复合材料热轧成箔板后与TC4箔材共同裁剪成相同尺寸;(4)将TC4箔材与SiC颗粒增强铝基复合材料交替排列;(5)放入真空热压炉中进行热压烧结,首先抽真空至3×10-2Pa,然后逐步加热至675℃~680℃,保温4小时,再缓慢升至750℃保温3小时。本发明制备出的复合材料综合力学性能优良,成本更低。
-
-
-
-
-
-
-
-
-