融合空频域显著性特征的SCV编码感知码率控制方法及装置

    公开(公告)号:CN118450127A

    公开(公告)日:2024-08-06

    申请号:CN202410885047.4

    申请日:2024-07-03

    Applicant: 华侨大学

    Abstract: 本发明公开了一种融合空频域显著性特征的SCV编码感知码率控制方法及装置,涉及视频编码领域,方法包括:获取屏幕内容视频,通过卷积、相似度计算,对屏幕内容视频在空域上进行显著性建模,获得空域的显著性特征;其次利用DCT变换,对屏幕内容视频在频域上进行显著性建模,获得频域的显著性特征;然后利用显著性因子指导CTU级的目标比特分配;最后通过显著性因子构建显著性启发的感知码率控制模型,调节参数,实现码率控制。本发明通过提取空域和频域的显著性特征并加以融合求得显著性因子,使用显著性因子指导码率控制,能够提高编码率失真性能,提升码率分配精度。

    基于微观几何纹理的防伪图像的生成方法及装置

    公开(公告)号:CN118233570B

    公开(公告)日:2024-07-26

    申请号:CN202410605570.7

    申请日:2024-05-16

    Abstract: 本发明公开了一种基于微观几何纹理的防伪图像的生成方法及装置,涉及防伪领域,包括:获取物品对应的唯一序列号、防伪图像的宽和高、防伪图像单元的几何纹理样式;根据唯一序列号生成编码比特流,基于防伪图像单元的几何纹理样式采用对应的加密模式对编码比特流进行加密,生成加密编码比特流;根据防伪图像的宽和高以及加密编码比特流确定防伪图像中防伪图像单元、定位模组和数据模组的数量、大小和起始坐标,根据加密编码比特流以及数据模组和定位模组的几何纹理确定数据模组和定位模组的纹理图案;绘制所有防伪图像单元的定位模组和数据模组,组成防伪图像,解决现有防伪图像防伪特征少、易受噪声干扰、识别效率低、样式可塑性差等问题。

    基于微观几何纹理的防伪图像的生成方法及装置

    公开(公告)号:CN118233570A

    公开(公告)日:2024-06-21

    申请号:CN202410605570.7

    申请日:2024-05-16

    Abstract: 本发明公开了一种基于微观几何纹理的防伪图像的生成方法及装置,涉及防伪领域,包括:获取物品对应的唯一序列号、防伪图像的宽和高、防伪图像单元的几何纹理样式;根据唯一序列号生成编码比特流,基于防伪图像单元的几何纹理样式采用对应的加密模式对编码比特流进行加密,生成加密编码比特流;根据防伪图像的宽和高以及加密编码比特流确定防伪图像中防伪图像单元、定位模组和数据模组的数量、大小和起始坐标,根据加密编码比特流以及数据模组和定位模组的几何纹理确定数据模组和定位模组的纹理图案;绘制所有防伪图像单元的定位模组和数据模组,组成防伪图像,解决现有防伪图像防伪特征少、易受噪声干扰、识别效率低、样式可塑性差等问题。

    基于多尺度注意力相似化蒸馏的无人机检测方法及装置

    公开(公告)号:CN117315516B

    公开(公告)日:2024-02-27

    申请号:CN202311616489.0

    申请日:2023-11-30

    Applicant: 华侨大学

    Abstract: 本发明公开了一种基于多尺度注意力相似化蒸馏的无人机检测方法及装置,涉及目标检测领域,包括:构建多尺度注意力图生成模块、教师网络及待训练的学生网络,通过多尺度注意力图生成模块分别将教师网络和学生网络的中间层特征映射转换为教师空间注意力信息和学生空间注意力信息,并建立注意力信息相似度优化损失函数,将注意力信息相似度优化损失函数与全局性的后验概率蒸馏函数以及学生网络的无人机目标分类损失函数和目标框回归损失函数结合以建立总损失函数,基于总损失函数对待训练的学生网络进行训练,得到经训练的学生网络;将图像输入经训练的学生网络,得到无人机检测结果,解决现有技术无人机检测准确率低、实时性差的问题。

    基于多模态融合的压缩视频质量增强方法及装置

    公开(公告)号:CN117237259B

    公开(公告)日:2024-02-27

    申请号:CN202311510614.X

    申请日:2023-11-14

    Applicant: 华侨大学

    Abstract: 本发明公开了一种基于多模态融合的压缩视频质量增强方法及装置,涉及图像处理领域,该方法包括:获取图像帧及其对应的光流图和纹理图并分别进行特征提取,得到图像特征、光流特征和纹理特征;构建压缩视频质量增强模型并训练,得到经训练的压缩视频质量增强模型;将图像特征、光流特征和纹理特征输入经训练的压缩视频质量增强模型,图像特征、光流特征和纹理特征输入多模态一致性单元,自适应调整三种模态信息的分布,得到第一特征、第二特征和第三特征并输入多模态融合单元以进行特征融合,得到融合特征并输入多模态重构单元,得到重构信息,将重构信息与图像帧相加,得到增强的视频帧,解决单模态图像难以有效改善最终重建视频的质量的问题。

    一种基于前景感知动态部件学习的行人再辨识方法

    公开(公告)号:CN117456560A

    公开(公告)日:2024-01-26

    申请号:CN202311775203.3

    申请日:2023-12-22

    Applicant: 华侨大学

    Abstract: 本发明公开了一种基于前景感知动态部件学习的行人再辨识方法,涉及人工智能、机器视觉领域,包括:将浅层特征映射解码为前景能量图,利用交叉熵优化前景能量图,使其趋于真实前景标签,再将前景能量图空间划分为若干部件能量块,用各个部件能量块代表相应的浅层特征映射块的当前重要性;结合当前重要性和历史重要性对各浅层特征映射块进行综合重要性计算并排序,根据综合重要性排序优先选择高综合重要性的浅层特征映射块参与行人再辨识模型训练,从而减少来自背景区域的低综合重要性的浅层特征映射块参与行人再辨识模型训练的机会,达到抑制背景区域对行人辨识的干扰,提升行人再辨识准确性,可广泛应用于智慧城市场景中的城市安防系统。

Patent Agency Ranking