一种基于Transformer结构的预训练方法及装置

    公开(公告)号:CN114677536A

    公开(公告)日:2022-06-28

    申请号:CN202210197831.7

    申请日:2022-03-02

    Abstract: 本发明公开了一种基于Transformer结构的预训练方法及装置,该方法先获取目标对象的图像和视频;针对图像和视频中任一分割区域:将分割区域的特征符号作为分割区域的标签;分别对图像的部分分割区域和视频的部分分割区域进行掩膜处理得到第一训练样本和第二训练样本;基于Transformer结构对第一训练样本中掩膜区域的特征符号进行有监督预测学习得到初始模型;之后基于初始模型初始化预训练模型得到初始预训练模型;最后利用初始预训练模型对第一训练样本和第二训练样本中进行有监督联合训练得到最终预训练模型。由此,使得模型同时学习到视频数据的空间特征和时间特征,进而为下游任务提供了很好的预训练模型。

    一种基于深度学习的胸部DR图像识别方法

    公开(公告)号:CN113034451A

    公开(公告)日:2021-06-25

    申请号:CN202110273187.2

    申请日:2021-03-15

    Abstract: 本发明提供了一种基于深度学习的胸部DR图像识别方法,主要包括:DICOM图像数据矫正处理以及异物检测。其中DICOM图像数据矫正处理以适应不同机型、不同拍摄参数和图像质量的DR影像;异物检测环节设计了适用于不同大小异物检出的目标检测网络,对矫正处理后的DICOM图像进行计算,以得到异物所在的区域及类别。本发明采用深度神经网络,自动从图像中提取多尺度的特征用于异物的检测,避免了手动从图像中提取特定的特征,从而使本算法不依赖待检测异物的图形学特征,极大的增加了本算法的适应性,而图像矫正处理阶段有效的降低了不同设备生成的不同质量的DR影像对检测结果的影像,增大了本算法的适用范围。

Patent Agency Ranking