一种跨模态图像显著性检测方法

    公开(公告)号:CN108898136B

    公开(公告)日:2021-09-17

    申请号:CN201810725464.7

    申请日:2018-07-04

    Applicant: 安徽大学

    Abstract: 本发明公开了一种跨模态图像显著性检测方法,输入配对的多模态图像,用基于超像素分割算法对不同模态进行分割,获取均匀、大小近似的超像素区域;设计基于图流形排序算法的多模态图像显著性检测模型,引入跨模态软一致性约束和流形排序拟合项稀疏性约束;以图像四边的超像素作为种子节点,计算其他节点与种子节点的相似性,得到初步的显著图;参考上一阶段得到的前景点作为种子节点,计算其他节点到该节点的相似性,得到最终的显著图。本发明提出了一种基于图流形排序算法互补地融合多模态图像的方法,并引入l1范数实现跨模态软一致性约束和流形排序函数拟合项稀疏性约束,即在协同多个模态的基础上,允许部分不一致,增加拟合项的鲁棒性。

    一种最小障碍距离加权跟踪方法

    公开(公告)号:CN108932729B

    公开(公告)日:2021-06-04

    申请号:CN201810939906.8

    申请日:2018-08-17

    Applicant: 安徽大学

    Abstract: 本发明公开了一种最小障碍距离加权跟踪方法,在搜索窗口内进行采样产生一组候选样本;将当前帧的边界框分为不重叠的图像块并扩大为扩展边界框,提取每个图像块的特征;以边框图像作为种子节点,计算其他节点与种子节点的最小障碍距离,然后得到距离转换图;将最小障碍距离作为权重加于对应的图像块特征上,得到空间有序的加权图像块特征描述子,带有图像特征的组合权重被合并到结构化支持向量机中以执行跟踪。本发明结合图像颜色直方图特征和方向梯度直方图特征计算得到基于背景种子节点集合的距离转换图,根据图像图像块与背景节点的最小障碍距离,解决了遮挡和形变的问题,同时能够减少漂移,增强跟踪的稳定性和鲁棒性。

    一种基于困难正样本生成的目标跟踪方法

    公开(公告)号:CN108596958B

    公开(公告)日:2021-06-04

    申请号:CN201810443211.0

    申请日:2018-05-10

    Applicant: 安徽大学

    Abstract: 本发明公开了一种基于困难正样本生成的目标跟踪方法,针对训练数据中的每一个视频,利用变分自编码器进行对应流型的学习即正样本生成网络,根据编码后的输入图像,微调编码,生成大量正样本;将正样本输入到困难正样本转换网络,训练一个智能体来学习用一个背景图像块来遮挡目标物体,智能体不断的进行包围盒的调整使得样本变的难以识别,达到困难正样本生成的目的,输出为被遮挡的困难正样本;基于生成的困难正样本,训练孪生网络用于目标图像块与候选图像块的匹配,来完成当前帧目标的定位,直至整个视频处理完成。本发明基于困难正样本生成的目标跟踪方法,直接从数据中去学习目标的流型分布情况,可得到大量多样的正样本。

    一种基于困难样本感知的RGBT目标跟踪方法

    公开(公告)号:CN112801182A

    公开(公告)日:2021-05-14

    申请号:CN202110111705.0

    申请日:2021-01-27

    Applicant: 安徽大学

    Abstract: 本发明公开一种基于困难样本感知的RGBT目标跟踪方法,包括对行可见光图片和热红外图片进行配准标注分成训练集和测试集,然后对构建对应模型对预处理后的图片进行训练和测试;模型中包括实时跟踪网络RT‑MDNet、VGG‑M特征提取模块、前景增强模块、特征嵌入模块和二分类模块,本发明在低光照光照变化强烈等极端条件下跟踪上目标,通过前景增强模块来增强前景信息抑制背景信息,并通过困难样本感知损失函数,挖掘更多困难样本,辅助分类器目标背景的分类。

    一种基于多光谱的车辆重识别方法及装置

    公开(公告)号:CN111274988A

    公开(公告)日:2020-06-12

    申请号:CN202010085045.9

    申请日:2020-02-10

    Applicant: 安徽大学

    Abstract: 本发明公开了一种基于多光谱的车辆重识别方法及装置,所述方法包括:获取可见光特征图、近红外特征图以及热红外特征图;获取各光谱下的类激活图,将各光谱下的类激活图分别通过全局平均池化得到各光谱下的类得分向量;将各光谱下的类得分向量分别通过归一化得到各光谱下的类别预测可能性向量,利用各光谱下的类别预测可能性向量获取各光谱下的损失函数,将各光谱下的损失函数融合获取多流的类别约束损失函数;获取异质协作身份损失函数;获取最终损失函数;训练异质协作感知的多流卷积神经网络,利用训练好的异质协作感知的多流卷积神经网络对车辆进行重识别;本发明的优点在于:能够解决恶劣环境中车辆重识别问题。

    基于适配器互学习模型的训练及可见光红外视觉跟踪方法

    公开(公告)号:CN110874590A

    公开(公告)日:2020-03-10

    申请号:CN201911128548.3

    申请日:2019-11-18

    Applicant: 安徽大学

    Abstract: 本发明涉及基基于适配器互学习模型的训练及可见光红外视觉跟踪方法,包括以下步骤;S11、构建网络模型;S12、使用人工标注好的可见光热红外数据集来训练整个网络模型;S21、获取当前帧的候选样本;S22、根据候选样本,预测目标位置;S23、判断当前帧是否跟踪成功。本发明通过在多适配器(包括模式适配器、通用适配器和实例适配器)的基础上引入适配器互学习模块,实现双向跨模态信息传递,以充分利用RGBT跟踪中不同特征学习方式的互补优势来进一步提高跟踪性。

    云中多租户服务器的自适应方法

    公开(公告)号:CN110740168A

    公开(公告)日:2020-01-31

    申请号:CN201910904089.7

    申请日:2019-09-24

    Applicant: 安徽大学

    Abstract: 本发明公开了一种云中多租户服务器的自适应方法,包括以下步骤:S1:将整个服务器按功能分解为多个组件服务器,通过历史大数据获取各组件服务器的质量参数的均值;S2:计算组件服务器的服务质量的关键性和租户的关键性;S3:根据服务质量关键性和租户关键性来计算各组件服务器的关键性;S4:根据计算得到的组件服务器关键性对各组件服务器进行排名;S5:制定服务冗余策略,确定最终冗余策略。本发明通过采用主动的策略在可能发生故障的组件服务器处进行冗余策略,大幅降低了云中服务器自我修复的开销;进一步提高任务的按时完成率,满足用户对服务质量的需求。

    一种基于多任务卷积神经网络的车辆属性识别方法

    公开(公告)号:CN106599869B

    公开(公告)日:2019-12-03

    申请号:CN201611199772.8

    申请日:2016-12-22

    Applicant: 安徽大学

    Abstract: 本发明提供了一种基于多任务卷积神经网络的车辆属性识别方法,包括训练过程和识别过程两部分,具体过程包括:获取待识别车辆图片、设计多任务卷积神经网络结构并训练车辆属性识别的网络模型、识别车辆类型并回归车辆车窗位置坐标、设计车辆图像掩膜并生成新车辆图像、提取新车辆图像的多任务卷积神经网络特征、训练SVM分类模型,识别车辆颜色。本发明的优点在于:无需用户手动定义特征再分类,多任务卷积神经网络结构能够同时接收并处理多个任务,并在多任务卷积神经网络的基础上,获得车辆图像中车辆的结构信息,以实现有效的车辆颜色识别方法,提高其识别准确度,从而为智能交通提供准确的依据。

    一种基于半监督特征和滤波器联合学习的视觉跟踪方法

    公开(公告)号:CN108776975A

    公开(公告)日:2018-11-09

    申请号:CN201810531415.X

    申请日:2018-05-29

    Applicant: 安徽大学

    Abstract: 本发明公开了一种基于半监督特征和滤波器联合学习的视觉跟踪方法,根据t-1帧的目标位置提取训练样本并提取方向梯度直方图特征、灰度特征和颜色特征,然后以像素点的特征为节点,两个像素点属于同一类的概率值为边权去构建8邻域图,根据像素点所处的位置计算初始权重向量,最终构建模型联合求解滤波器和权重向量,在第t帧图像上,根据t-1帧目标位置设置搜索区域并提取特征,使用权重向量对特征进行加权。最终和滤波器相卷积得到响应图并确定目标的中心点。本发明使用半监督的方式在一个统一的优化框架内联合学习特征可靠性和相关滤波器。来抑制在跟踪过程中背景区域对跟踪的干扰,使得跟踪器对跟踪目标有着更加鲁棒的效果。

    基于网格流的输电线路火灾蔓延预测方法及系统

    公开(公告)号:CN103870891B

    公开(公告)日:2017-09-22

    申请号:CN201410115140.3

    申请日:2014-03-25

    CPC classification number: Y02A90/15

    Abstract: 本发明公开了一种基于网格流的输电线路火灾蔓延预测方法及系统,首先利用火点采集设备获取火点信息;将受灾区域GIS图像划分成网格图像,得到受灾区域的网格地形,识别每个网格的地物类别,再计算不同气象条件下的跨网格火灾蔓延强度,构造受灾区域的火灾蔓延加权网格图;在受灾区域的火灾蔓延加权网格图中搜索从火灾扩散路径,建立火情蔓延模型,计算受灾杆塔的坐标、蔓延的区域面积与火灾蔓延到杆塔的时间;最后对依据网格流方法预测的火灾蔓延的不同影响级别做出相应的告警。本发明的基于网格流的输电线路火灾蔓延预测方法及系统,具有能快速计算出火点蔓延到输电线路区域的时间和火情强度、及时通知火情、预警的准确性高等优点。

Patent Agency Ranking