一种基于困难样本感知的RGBT目标跟踪方法

    公开(公告)号:CN112801182B

    公开(公告)日:2022-11-04

    申请号:CN202110111705.0

    申请日:2021-01-27

    Applicant: 安徽大学

    Abstract: 本发明公开一种基于困难样本感知的RGBT目标跟踪方法,包括对行可见光图片和热红外图片进行配准标注分成训练集和测试集,然后对构建对应模型对预处理后的图片进行训练和测试;模型中包括实时跟踪网络RT‑MDNet、VGG‑M特征提取模块、前景增强模块、特征嵌入模块和二分类模块,本发明在低光照光照变化强烈等极端条件下跟踪上目标,通过前景增强模块来增强前景信息抑制背景信息,并通过困难样本感知损失函数,挖掘更多困难样本,辅助分类器目标背景的分类。

    一种基于困难样本感知的RGBT目标跟踪方法

    公开(公告)号:CN112801182A

    公开(公告)日:2021-05-14

    申请号:CN202110111705.0

    申请日:2021-01-27

    Applicant: 安徽大学

    Abstract: 本发明公开一种基于困难样本感知的RGBT目标跟踪方法,包括对行可见光图片和热红外图片进行配准标注分成训练集和测试集,然后对构建对应模型对预处理后的图片进行训练和测试;模型中包括实时跟踪网络RT‑MDNet、VGG‑M特征提取模块、前景增强模块、特征嵌入模块和二分类模块,本发明在低光照光照变化强烈等极端条件下跟踪上目标,通过前景增强模块来增强前景信息抑制背景信息,并通过困难样本感知损失函数,挖掘更多困难样本,辅助分类器目标背景的分类。

Patent Agency Ranking