-
公开(公告)号:CN110363770B
公开(公告)日:2022-10-11
申请号:CN201910631325.2
申请日:2019-07-12
Applicant: 安徽大学
Abstract: 本发明公开了一种边缘引导式红外语义分割模型的训练方法及装置,方法包括:1)、预先建立包括依次数据连接的边缘嵌入模块层、残差网络模块层、空洞卷积模块以及第一卷积层的初始语义分割模型;2)、使用预先标记了目标的样本集训练初始语义分割模型;3)、利用交叉熵损失函数计算训练后语义分割模型输出的预测结果与对应样本的真值之间的损失值;4)、在训练次数大于或等于设定值的情况下,将训练后语义分割模型作为目标语义分割模型;5)、训练次数小于设定值的情况下,根据上述所得损失值更新训练后的语义分割模型的模型参数,返回执行步骤2),直至训练次数大于或等于设定值。应用本发明实施例,可以提高语义分割的准确性。
-
公开(公告)号:CN108898136B
公开(公告)日:2021-09-17
申请号:CN201810725464.7
申请日:2018-07-04
Applicant: 安徽大学
Abstract: 本发明公开了一种跨模态图像显著性检测方法,输入配对的多模态图像,用基于超像素分割算法对不同模态进行分割,获取均匀、大小近似的超像素区域;设计基于图流形排序算法的多模态图像显著性检测模型,引入跨模态软一致性约束和流形排序拟合项稀疏性约束;以图像四边的超像素作为种子节点,计算其他节点与种子节点的相似性,得到初步的显著图;参考上一阶段得到的前景点作为种子节点,计算其他节点到该节点的相似性,得到最终的显著图。本发明提出了一种基于图流形排序算法互补地融合多模态图像的方法,并引入l1范数实现跨模态软一致性约束和流形排序函数拟合项稀疏性约束,即在协同多个模态的基础上,允许部分不一致,增加拟合项的鲁棒性。
-
公开(公告)号:CN110363770A
公开(公告)日:2019-10-22
申请号:CN201910631325.2
申请日:2019-07-12
Applicant: 安徽大学
Abstract: 本发明公开了一种边缘引导式红外语义分割模型的训练方法及装置,方法包括:1)、预先建立包括依次数据连接的边缘嵌入模块层、残差网络模块层、空洞卷积模块以及第一卷积层的初始语义分割模型;2)、使用预先标记了目标的样本集训练初始语义分割模型;3)、利用交叉熵损失函数计算训练后语义分割模型输出的预测结果与对应样本的真值之间的损失值;4)、在训练次数大于或等于设定值的情况下,将训练后语义分割模型作为目标语义分割模型;5)、训练次数小于设定值的情况下,根据上述所得损失值更新训练后的语义分割模型的模型参数,返回执行步骤2),直至训练次数大于或等于设定值。应用本发明实施例,可以提高语义分割的准确性。
-
公开(公告)号:CN108898136A
公开(公告)日:2018-11-27
申请号:CN201810725464.7
申请日:2018-07-04
Applicant: 安徽大学
Abstract: 本发明公开了一种跨模态图像显著性检测方法,输入配对的多模态图像,用基于超像素分割算法对不同模态进行分割,获取均匀、大小近似的超像素区域;设计基于图流形排序算法的多模态图像显著性检测模型,引入跨模态软一致性约束和流形排序拟合项稀疏性约束;以图像四边的超像素作为种子节点,计算其他节点与种子节点的相似性,得到初步的显著图;参考上一阶段得到的前景点作为种子节点,计算其他节点到该节点的相似性,得到最终的显著图。本发明提出了一种基于图流形排序算法互补地融合多模态图像的方法,并引入l1范数实现跨模态软一致性约束和流形排序函数拟合项稀疏性约束,即在协同多个模态的基础上,允许部分不一致,增加拟合项的鲁棒性。
-
-
-