-
公开(公告)号:CN102916917B
公开(公告)日:2014-12-17
申请号:CN201210359005.4
申请日:2012-09-25
Applicant: 哈尔滨工程大学
IPC: H04L27/00
Abstract: 本发明的目的在于提供基于切片双谱和小波变换的FSK信号个体识别方法,包括如下步骤:对接收到的信号进行双谱和切片双谱分析,得到信号的切片双谱的频谱图,分别建立不同信噪比下包络参数特征数据库;对接收到的信号进行小波变换,提取低频小波系数的均值,同时建立不同信噪比条件下,不同M数和不同调制参数的4FSK信号的特征数据库;对切片双谱包络参数特征和低频小波系数特征进行融合,识别FSK信号的调制类型;采用同样的信号处理过程,实现不同参数的4FSK信号的信号个体识别。本发明能够克服现有类内调制识别方法对信号信噪比要求高的不足,在低信噪比和知道较少先验知识的条件下,实时地对FSK信号进行个体识别。
-
公开(公告)号:CN104200434A
公开(公告)日:2014-12-10
申请号:CN201410431699.7
申请日:2014-08-28
Applicant: 哈尔滨工程大学
IPC: G06T5/00
Abstract: 本发明属于数字图像处理技术领域,具体涉及一种应用于图像去噪并作为后续目标识别的预处理的基于噪声方差估计的非局部均值图像去噪方法。本发明包括:输入噪声图像,获取噪声图像尺寸;生成一个与噪声图像相同尺寸的零矩阵;对噪声图像边缘进行对称扩展;估计噪声方差,确定全局平滑参数;遍历噪声图像中每个像素,计算权值;利用非局部均值算法计算去噪图像。本发明中基于噪声方差估计的非局部均值图像去噪方法,可以显著提高噪声图像清晰度,并且去噪后能更清晰地保留边缘和细节信息。
-
公开(公告)号:CN102679980A
公开(公告)日:2012-09-19
申请号:CN201110361072.5
申请日:2011-11-15
Applicant: 哈尔滨工程大学
IPC: G01C21/20
Abstract: 本发明的目的在于提供一种基于多尺度维分解的目标跟踪方法,包括以下步骤:选用小波基函数将目标角度或者航迹的量测数据分解到尺度上,在每个尺度的低频子空间上采用EKF算法对量测数据进行预测和滤波,得到不同尺度上目标的粗跟踪结果,在不同尺度的高频子空间上采用小波阈值算法,进一步去除噪声和野值的影响;通过小波重构算法融合不同尺度上的跟踪数据,得到目标的精确跟踪数据。本发明是能够在各种复杂环境下有效、准确、可靠、稳定的目标跟踪方法,利用FPGA的并行处理结构实现多尺度EKF算法,小波分解和重构、不同尺度上的EKF算法和小波阈值去噪都是同时进行的,保证了对目标跟踪的实时性。
-
公开(公告)号:CN102509020A
公开(公告)日:2012-06-20
申请号:CN201110361602.6
申请日:2011-11-15
Applicant: 哈尔滨工程大学
IPC: G06F19/00
Abstract: 本发明的目的在于提供基于传感器网络的复杂环境下多目标信息融合方法,分为以下步骤:选用适当的小波基函数将量测数据分解在若干个尺度上,在每个尺度上的低频子空间信号利用卡尔曼算法进行滤波,得到新的滤波数据,将每个尺度上的高频子空间中细节信号的极大值点去掉,得到新的滤波数据,将每个尺度上处理后的数据通过小波重构算法,得到原始量测数据在不同尺度上滤波后的结果。本发明具有高灵敏度、高精度、高准确率、高稳定性和高可靠性等特点。
-
公开(公告)号:CN102496144A
公开(公告)日:2012-06-13
申请号:CN201110360694.6
申请日:2011-11-15
Applicant: 哈尔滨工程大学
IPC: G06T5/00
Abstract: 本发明的目的在于提供基于HSV色彩空间的NSCT水声图像增强方法,包括以下步骤:对RGB空间的水声图像转换至HSV空间,将HSV图像分解成色度H,饱和度S,数值V三个分量,对色度H分量和饱和度S分量进行中值滤波,对数值V分量进行NSCT增强,分别得到增强后的三个新分量H’、S’、V’,将H’、S’、V’合成新的HSV’图像,对于得到的新HSV’图像并进行中值滤波,将新的HSV’图像逆变换至RGB空间,得到增强后的图像。本发明对于原始水声图像的信息量和清晰度有明显的提高,在增强后能比较清晰地获得边缘和细节信息,对于以后进一步分析处理等有很大的帮助。
-
公开(公告)号:CN117113073B
公开(公告)日:2024-11-22
申请号:CN202310477430.1
申请日:2023-04-28
Applicant: 哈尔滨工程大学
IPC: G06F18/214 , G06F18/213 , G06F18/241 , G06N3/094
Abstract: 一种电磁信号识别模型对抗域泛化防御方法,它涉及一种对抗域泛化防御方法。本发明为了解决DL模型的不可解释性使得它们的结果很容易受到对输入数据添加精心设计的不可察觉扰动的影响的问题。本发明采用对齐原始信号和对抗样本的任务相关特征的方法,结合对抗训练增强AMC模型的对抗鲁棒性。本发明属于通信技术领域。
-
公开(公告)号:CN117908577B
公开(公告)日:2024-11-19
申请号:CN202311766597.6
申请日:2023-12-21
Applicant: 哈尔滨工程大学
IPC: G05D1/695 , G05D109/20
Abstract: 一种基于合作博弈的多智能体启发式任务分配方法和系统,涉及无人集群技术领域。解决现有无人机携带资源和任务之间的耦合关系考虑较少,限制了特定场景下的任务分配效率的问题。所述方法包括:根据无人机位置信息确立邻近无人机集合;无人机依靠传感器获取外界信息,判断是否出现新任务;判断探测到新任务,发现任务的无人机被标记为长机,并将担任发起人的角色进行广播;无人机根据任务分配算法确定最终的任务分配方案;根据各自所得的任务序列依次执行相关任务,并对环境的持续探测以及对资源进行动态更新;如果任务完成则联盟解散,无人机保持当前的飞行状态在区域内执行任务;如果任务未完成继续执行上一步骤。适用于无人机资源分配领域。
-
公开(公告)号:CN117908560B
公开(公告)日:2024-11-12
申请号:CN202311804902.6
申请日:2023-12-26
Applicant: 哈尔滨工程大学
Abstract: 一种动态环境下用于无人机的分布式协同目标搜索方法及装置,涉及多智能体协同技术领域,方法包括:获取任务环境地图并栅格化;基于整体概率密度分布、不确定度量指标、吸引和排斥信息素以及分区标志四种属性,对栅格化地图进行初始化;更新搜索范围内的目标存在概率;根据所述吸引和排斥信息素计算任务收益和任务约束;基于所述目标存在概率、任务收益以及任务约束建立优化模型,通过蚁群算法进行目标优化,其中,将任务收益作为优化目标最大化;更新无人机下一时刻的状态信息及环境信息;该方法对任务环境的迭代划分找到不确定度均衡的任务区域,构建了搜索收益函数并采用一种改进的蚁群方法求解,能够在保证搜索安全性的基础上提高搜索效率。
-
公开(公告)号:CN117908577A
公开(公告)日:2024-04-19
申请号:CN202311766597.6
申请日:2023-12-21
Applicant: 哈尔滨工程大学
IPC: G05D1/695 , G05D109/20
Abstract: 一种基于合作博弈的多智能体启发式任务分配方法和系统,涉及无人集群技术领域。解决现有无人机携带资源和任务之间的耦合关系考虑较少,限制了特定场景下的任务分配效率的问题。所述方法包括:根据无人机位置信息确立邻近无人机集合;无人机依靠传感器获取外界信息,判断是否出现新任务;判断探测到新任务,发现任务的无人机被标记为长机,并将担任发起人的角色进行广播;无人机根据任务分配算法确定最终的任务分配方案;根据各自所得的任务序列依次执行相关任务,并对环境的持续探测以及对资源进行动态更新;如果任务完成则联盟解散,无人机保持当前的飞行状态在区域内执行任务;如果任务未完成继续执行上一步骤。适用于无人机资源分配领域。
-
公开(公告)号:CN117908560A
公开(公告)日:2024-04-19
申请号:CN202311804902.6
申请日:2023-12-26
Applicant: 哈尔滨工程大学
Abstract: 一种动态环境下用于无人机的分布式协同目标搜索方法及装置,涉及多智能体协同技术领域,方法包括:获取任务环境地图并栅格化;基于整体概率密度分布、不确定度量指标、吸引和排斥信息素以及分区标志四种属性,对栅格化地图进行初始化;更新搜索范围内的目标存在概率;根据所述吸引和排斥信息素计算任务收益和任务约束;基于所述目标存在概率、任务收益以及任务约束建立优化模型,通过蚁群算法进行目标优化,其中,将任务收益作为优化目标最大化;更新无人机下一时刻的状态信息及环境信息;该方法对任务环境的迭代划分找到不确定度均衡的任务区域,构建了搜索收益函数并采用一种改进的蚁群方法求解,能够在保证搜索安全性的基础上提高搜索效率。
-
-
-
-
-
-
-
-
-