一种优化词袋模型的图像分类方法

    公开(公告)号:CN113902930A

    公开(公告)日:2022-01-07

    申请号:CN202111087243.X

    申请日:2021-09-16

    Applicant: 燕山大学

    Inventor: 李海滨 张秀菊

    Abstract: 本发明公开一种优化词袋模型的图像分类方法,所述方法包括:提取图像局部特征;对局部特征聚类生成视觉字典;计算视觉单词显著性生成显著性字典;根据显著性字典对图像局部特征进行加权局部约束线性编码;对编码系数矩阵进行空间金字塔池化生成图像向量表示;将得到的图像向量表示输入到HIK交叉核函数SVM分类器中进行分类。本发明提出的显著性字典考虑了视觉单词之间的内在关系,减少了视觉字典中的冗余信息,提升了视觉字典的显著性和判别力。另外提出的加权局部约束线性编码,在将局部特征用视觉单词表示的过程中,考虑了K近邻单词之间的位置关系,为单词设置了权重,减小了重构误差,提升了分类性能。

    一种优化词袋模型的图像分类方法

    公开(公告)号:CN113902930B

    公开(公告)日:2023-10-27

    申请号:CN202111087243.X

    申请日:2021-09-16

    Applicant: 燕山大学

    Inventor: 李海滨 张秀菊

    Abstract: 本发明公开一种优化词袋模型的图像分类方法,所述方法包括:提取图像局部特征;对局部特征聚类生成视觉字典;计算视觉单词显著性生成显著性字典;根据显著性字典对图像局部特征进行加权局部约束线性编码;对编码系数矩阵进行空间金字塔池化生成图像向量表示;将得到的图像向量表示输入到HIK交叉核函数SVM分类器中进行分类。本发明提出的显著性字典考虑了视觉单词之间的内在关系,减少了视觉字典中的冗余信息,提升了视觉字典的显著性和判别力。另外提出的加权局部约束线性编码,在将局部特征用视觉单词表示的过程中,考虑了K近邻单词之间的位置关系,为单词设置了权重,减小了重构误差,提升了分类性能。

Patent Agency Ranking