-
公开(公告)号:CN110033041B
公开(公告)日:2022-05-03
申请号:CN201910296276.1
申请日:2019-04-13
Applicant: 湖南大学
Abstract: 本发明属于基因表达谱分类领域,公开了一种基于深度学习的基因表达谱距离度量方法,属于深度学习在生物大数据上的挖掘和应用。首先,设计了一种适用于基因特征度量学习的卷积神经网络模型来提取数据的特征,然后运用改进的余弦距离来计算数据之间的距离,最后通过分类算法的分类效果来衡量该方法的优良。该方法能够快速高效地度量出不同的基因表达谱之间的相似度,为后续的基因分类、聚类、差异性表达分析、化合物筛查等研究提供数据。相比较传统的基因富集方法,这种方法显著提高了数据之间的距离度量效果,并且可以有效的减少基因表达谱分析时候的人工干预,避免了常规深度网络易产生的过拟合现象,该方法有较强的可迁移性。
-
公开(公告)号:CN110033824A
公开(公告)日:2019-07-19
申请号:CN201910296287.X
申请日:2019-04-13
Applicant: 湖南大学
IPC: G16B25/10
Abstract: 本发明属于基因表达谱分类领域,公开了一种基于共享字典学习的基因表达谱分类方法,属于稀疏字典学习在生物大数据上的挖掘和应用。本方法首先构建一个共享字典,该字典能够获取所有类别的样本;然后训练字典,在训练字典的同时还训练投影矩阵,并且投影矩阵对测试样本的投影可以加宽不同类型样本之间的距离;最后,通过使用字典重建测试样本的系数编码向量之间的距离判定类别。该方法能够快速高效地对基因表达谱数据分类,这有助于区分癌症种类及其亚型,帮助从分子层面认识肿瘤的致病机理,并为彻底治疗肿瘤提供基因层次的解决方案。该方法具有共享样本的能力,少量样本时能保持稳定的投影能力,和一般的分类方法相比较,分类准确度有很大提升。
-
公开(公告)号:CN112309505B
公开(公告)日:2021-08-17
申请号:CN202011226196.8
申请日:2020-11-05
Applicant: 湖南大学
Abstract: 本发明属于计算机科学领域,公开了一种基于网络表征的抗新冠炎症药物发现方法。首先通过融合DrugBank、UniProt、HPRD、SIDER、CTD、NDFRT和STRING等多个数据库构建多源、异构、大规模的生物医药网络;然后,通过随机游走的方式在网络中进行序列采样构成网络序列库,利用Transformer的深层双向编码器表征技术对进行表征,得到每个节点的表征向量;利用归纳矩阵分解技术进行靶标‑药物相互作用预测,发现潜在的抗COVID‑19炎症药物,推理出相关药物的作用机理。本发明通过集成多源异构的信息,多样化的数据为药物研发提供了一个多层关联知识,进而提高了预测精度;其次,通过Transformer模型融合了多头注意力机制,可以不同程度的捕获网络节点之间的关联性与网络节点的物理距离,进而改善表征的性能。
-
公开(公告)号:CN110136113A
公开(公告)日:2019-08-16
申请号:CN201910399732.5
申请日:2019-05-14
Applicant: 湖南大学
Abstract: 本发明属于计算机视觉及机器学习技术领域,公开了一种基于卷积神经网络的阴道病理图像分类方法。本发明包括步骤:使用上采样方法,得到类别平衡的阴道病理图像数据集;利用数据增强方法扩增阴道病理图像数据集;利用扩增的阴道病理图像数据集对图像分类卷积神经网络进行训练;利用交叉熵损失函数,结合BP算法对图像分类卷积神经网络进行网络参数更新;通过训练后的最优图像分类卷积神经网络对输入图像进行分类。本发明避免了传统特征提取方法的局限,如:高度依赖于医护人员的经验知识,耗费大量的时间和精力完成,提取出有区分性的高质量特征也往往存在一定的困难,而且准确率低,本发明借助于卷积神经网络,实现阴道病理图像的高精度分类。
-
公开(公告)号:CN115440297A
公开(公告)日:2022-12-06
申请号:CN202211080659.3
申请日:2022-09-05
Applicant: 湖南大学
Abstract: 本发明公开了一种基于图属性神经网络的药物与靶标预测方法,包括:S1、构建多源异构生物网络并对药物、蛋白质以及疾病进行唯一标识;S2、基于人类蛋白与蛋白相互作用网络的疾病模块理论计算任意两个疾病之间相似性;S3、将每个生物实体对和对应的相似性值作为图注意力神经网络表征学习阶段的训练样本;S4、训练样本通过驱动图注意力神经网络学习得到每个实体的表征向量;S5、利用训练好的药物与靶标预测模型进行预测药物与靶标相互作用。本发明降低了药物与靶标相互作用预测的深度学习模型对训练样本的依赖性,提高了预测的性能。
-
公开(公告)号:CN110136113B
公开(公告)日:2022-06-07
申请号:CN201910399732.5
申请日:2019-05-14
Applicant: 湖南大学
Abstract: 本发明属于计算机视觉及机器学习技术领域,公开了一种基于卷积神经网络的阴道病理图像分类方法。本发明包括步骤:使用上采样方法,得到类别平衡的阴道病理图像数据集;利用数据增强方法扩增阴道病理图像数据集;利用扩增的阴道病理图像数据集对图像分类卷积神经网络进行训练;利用交叉熵损失函数,结合BP算法对图像分类卷积神经网络进行网络参数更新;通过训练后的最优图像分类卷积神经网络对输入图像进行分类。本发明避免了传统特征提取方法的局限,如:高度依赖于医护人员的经验知识,耗费大量的时间和精力完成,提取出有区分性的高质量特征也往往存在一定的困难,而且准确率低,本发明借助于卷积神经网络,实现阴道病理图像的高精度分类。
-
公开(公告)号:CN113053457B
公开(公告)日:2022-04-05
申请号:CN202110321988.1
申请日:2021-03-25
Applicant: 湖南大学
Abstract: 本发明属于机器学习以及计算机生物信息学领域,公开了一种基于多通路图卷积神经网络的药物靶标预测方法。本发明包括步骤:基于随机游走的方法,计算药物信息的概率共现矩阵;通过概率共现矩阵计算移位正点互信息(PPMI)矩阵,通过使用计算所得的PPMI矩阵以及带自环的药物信息邻接矩阵作为全局和局部一致性的卷积核,对药物信息网络做图卷积操作,整合复杂有效的节点及拓扑结构知识,并通过交叉熵损失函数以及均方差损失函数联合对模型进行训练,将训练完成的模型作为药物靶标潜在关系预测的模型。本发明避免了传统药物靶标预测方法的局限性。本发明借助于多通路图卷积神经网络模型,实现高精度的药物靶标预测。
-
公开(公告)号:CN113053457A
公开(公告)日:2021-06-29
申请号:CN202110321988.1
申请日:2021-03-25
Applicant: 湖南大学
Abstract: 本发明属于机器学习以及计算机生物信息学领域,公开了一种基于多通路图卷积神经网络的药物靶标预测方法。本发明包括步骤:基于随机游走的方法,计算药物信息的概率共现矩阵;通过概率共现矩阵计算移位正点互信息(PPMI)矩阵,通过使用计算所得的PPMI矩阵以及带自环的药物信息邻接矩阵作为全局和局部一致性的卷积核,对药物信息网络做图卷积操作,整合复杂有效的节点及拓扑结构知识,并通过交叉熵损失函数以及均方差损失函数联合对模型进行训练,将训练完成的模型作为药物靶标潜在关系预测的模型。本发明避免了传统药物靶标预测方法的局限性。本发明借助于多通路图卷积神经网络模型,实现高精度的药物靶标预测。
-
公开(公告)号:CN112309505A
公开(公告)日:2021-02-02
申请号:CN202011226196.8
申请日:2020-11-05
Applicant: 湖南大学
Abstract: 本发明属于计算机科学领域,公开了一种基于网络表征的抗新冠炎症药物发现方法。首先通过融合DrugBank、UniProt、HPRD、SIDER、CTD、NDFRT和STRING等多个数据库构建多源、异构、大规模的生物医药网络;然后,通过随机游走的方式在网络中进行序列采样构成网络序列库,利用Transformer的深层双向编码器表征技术对进行表征,得到每个节点的表征向量;利用归纳矩阵分解技术进行靶标‑药物相互作用预测,发现潜在的抗COVID‑19炎症药物,推理出相关药物的作用机理。本发明通过集成多源异构的信息,多样化的数据为药物研发提供了一个多层关联知识,进而提高了预测精度;其次,通过Transformer模型融合了多头注意力机制,可以不同程度的捕获网络节点之间的关联性与网络节点的物理距离,进而改善表征的性能。
-
公开(公告)号:CN110033041A
公开(公告)日:2019-07-19
申请号:CN201910296276.1
申请日:2019-04-13
Applicant: 湖南大学
Abstract: 本发明属于基因表达谱分类领域,公开了一种基于深度学习的基因表达谱距离度量方法,属于深度学习在生物大数据上的挖掘和应用。首先,设计了一种适用于基因特征度量学习的卷积神经网络模型来提取数据的特征,然后运用改进的余弦距离来计算数据之间的距离,最后通过分类算法的分类效果来衡量该方法的优良。该方法能够快速高效地度量出不同的基因表达谱之间的相似度,为后续的基因分类、聚类、差异性表达分析、化合物筛查等研究提供数据。相比较传统的基因富集方法,这种方法显著提高了数据之间的距离度量效果,并且可以有效的减少基因表达谱分析时候的人工干预,避免了常规深度网络易产生的过拟合现象,该方法有较强的可迁移性。
-
-
-
-
-
-
-
-
-